
AFRL-IF-WP-TR-1999-1507

PARALLEL VERY HIGH SPEED INTEGRATED
CIRCUITS (VHSIC) HARDWARE DESCRIPTION
LANGUAGE (VHDL) SIMULATION FOR
PERFORMANCE MODELING

DR. MOON JUNG CHUNG

MICHIGAN STATE UNIVERSITY
DEPARTMENT OF COMPUTER SCEENCE
EAST LANSING, MI 48824

MARCH 1999

FINAL REPORT FOR 07/01/1996 - 02/28/1999

HPCMP
High Performance Computing

Modernization Program

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE OH 45433-7334

20000127 030
rUIlO QUÄLET* DJS^DGTBD 1

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

££ j^--%£aaKa?aayi^
AL SCARPELLI/Electronics Engineer JAMES S. WILLIAMSON, Chief
Embedded Information Sys Eng Branch Embedded Information Sys Eng Branch
Information Technology Division Information Technology Division

c
EUGENE C. BLACKBURN, Chief
Information Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

REPORT DOCUMENTATION PAGE
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gethering end maintaining the data needed, and completing and reviewmg
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Manegement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

MARCH 1999
3. REPORT TYPE AND DATES COVERED

FINAL REPORT FOR 07/01/1996 - 02/28/1999
4. TITLE AND SUBTITLE

PARALLEL VERY HIGH SPEED INTEGRATED CIRCUITS (VHSIC) HARDWARE
DESCRIPTION LANGUAGE (VHDL) SIMULATION FOR PERFORMANCE
MODELING
6. AUTHOR(S)

DR. MOON JUNG CHUNG

5. FUNDING NUMBERS

C F33615-96-C-1913
PE 62204
PR 6096
TA 40
WU 35

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MICHIGAN STATE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
EAST LANSING, MI 48824

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB, OH 45433-7334
POC: AL SCARPELLI. AFRL/IFTA. 937-255-7698 EXT. 3603

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-WP-TR-1999-1507

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wonts)

As the complexity of micro-electronic systems continuously increases, it becomes critical to develop effective tools that can cut
the design time and improve the quality of design. DoD needs to develop new tools to be able to simulate large complex
systems, and to fully maximize the rapid progress in high performance computing technology occurring today. The goal of
this project was to develop and implement efficient paradigms for VHDL simulation on massively parallel processor machines
so that we can achieve speed-up of up to a hundred times compared to sequential simulation. Our research focus was on
performance and behavioral level simulation. The performance model allows us to find the trade off between various hardware
components and architectures. Behavioral simulations are used to prove the functional correctness of the system. The research
issues involved in the project were: processor communications, synchronization, and event queue manipulation, deadlock
handling, communication latency hiding, and granularity of computation. We have measured the performance of the proposed
techniques on various platforms such as the IBM SP2 and SGI Origin 2000, and achieved speed-ups of 31 times.

14. SUBJECT TERMS

VHDL, Parallel Simulation, Time Warp, Performance Modeling
15. NUMBER OF PAGES

130
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-8S) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

SUMMARY 1

BACKGROUND 2

1. INTRODUCTION 4

1.1 VHDL 4

1.2 PARALLEL VHDL 4

1.3 GOAL 5

1.4 OBJECTIVE 6

1.5 EXTENSIBILITY 7

1.6 MAJOR TASKS 8

2. PARALLEL SIMULATOR SYSTEM ARCHITECTURE 10

2.1 MAJOR MODULES 11

3. OBJECT MODELING 12

3.1 OBJECT MODEL OF THE SIMULATION ENGINE 14

3.2 SIMULATION ENGINE: LOGICAL PROCESS AND SIMULATION OBJECT 17

3.3 PARTITIONING 18

4. FRONT END INTERFACE 19

4.1 THE OBJECT MODEL 20

4.2 IMPLEMENTATION DETAILS 24

4.3 FUTURE WORK 67

5. ELABORATION AND INTERCONNECTION OBJECTS 68

5.1 INTRODUCTION 68

5.2 OBJECTS IN VHDL 70

5.3 ALGORITHM OVERVIEW 75

in

5.4 IMPLEMENTATION OVERVIEW 81

6. BENCHMARKS 85

7. CONCLUSIONS 90

APPENDICES 91

APPENDIX A 91

APPENDIX B 93

APPENDIX C 94

APPENDIX D 97

APPENDIX E 98

APPENDIX F 99

APPENDIX G 102

APPENDIX H 108

REFERENCES 121

IV

Figures

2.1 PARALLEL SIMULATOR BLOCK DIAGRAM 10

3.1 OBJECT MODELS 14

12 LOGICAL PROCESS 17

4.1 DEFAULT PUBLISHING FORMAT OF SIGNAL ASSIGNMENT 43

42 EXAMPLE ON HOW TO PUBLISH EXPRESIONS 46

43 THE _PUBLISH_CC_OPERATOR_NAME0 METHOD 47

4.4 SYNTAX OF WAIT STATEMENT 55

4.5 WAIT FOR TIMEOUT CLAUSE 59

4.6 CONSTANT DECLARATION SYNTAX 60

4.7 CODE OF CONSTANT DECLARATION 62

4.8 OVERLOADING ASSIGNMENT OPERATOR 65

5.1 INTERCONNECTION OBJECTS 69

5.2 THE ENCODING OF THE NETWORK 69

53 DELAYED AND ARCHITECTURE 74

5.4 DECOMPOSITION HIERARCHY 78

6.1 SPEED-UP OF S35932X2 85

62 COMPARISON OF TIME WARP AND SYNCHRONOUS PROTOCOLS 86

63 SPEED-UP WITH ISCAS S953 FOR GRAIN SIZE 100 87

6.4 SPEED-UP WITH ISCAS S953 FOR GRAIN SIZE 1000 87

6.5 S35932X1 SPEEDUP 88

6.6 SPEEDUP OF S15850 88

6.7 ODD-EVEN SORTER 89

Tables

4.1 FUNCTIONS FOR SIGNAL VARIABLE/REGISTRATION 22

\2 SYSTEM DEFINED INITIAL VALUES 23

43 PREDEFINED PUBLIC DATA ELEMENTS 29

VI

SUMMARY

As the complexity of micro-electronic systems continuously increases, it becomes

critical to develop effective tools that can cut the design time and improve the quality of

design. DoD needs to develop new tools to be able to simulate large complex systems,

and to fully maximize the rapid progress in high performance computing technology

occurring today.

The goal of this project was to develop and implement efficient paradigms for VHDL

simulation on massively parallel processor machines so that we can achieve speed-up of up

to a hundred times compared to sequential simulation. Our research focus was on

performance and behavioral level simulation. The performance model allows us to find the

trade off between various hardware components and architectures. Behavioral simulations

are used to prove the functional correctness of the system.

The research issues involved in the project were: processor communication,

synchronization, and event queue manipulation, deadlock handling, communication latency

hiding, and granularity of computation. We have measured the performance of the

proposed techniques on various platforms such as the IBM SP2 and SGI Origin 2000, and

achieved speed-ups of 31 times.

BACKGROUND

With the increasing complexity of micro-electronics systems, validating various models

(or virtual prototypes) becomes critically important. There are two approaches to validating

the correctness of VLSI design: verification techniques and simulation. Of these two

approaches, simulation is still the primary tool. Simulation can be used in a hierarchical

fashion. At the top level, performance models are used to explore the trade off between

various hardware components and architectures. Behavioral simulations are used to prove

the correctness of the system specification. At a lower level, timing simulation is used to

validate the correct timing information such as set-up hold times, and is the only practical

tool available at this level. For large micro-electronics systems, simulation has become a

very time-consuming and critical part of VLSI design. Typically, simulation constitutes

about 80% of the design cycle.

VHDL is an IEEE standard hardware description language developed by the DoD. It

can be used to describe systems at both behavioral and structural levels. It can also be used

to describe a performance model. It is expected that we need to simulate a system up to

100,000 VHDL processes to accurately model a start-of-the-art system. Simulating such a

large system can be extremely slow in a sequential machine.

Parallel logic simulation has recendy attracted a considerable amount of interest.

However, most research is restricted to symmetric multi-processor machines or a MIMD

machine with a small number of processors. Moreover, there are only a few benchmark

results available based on actual simulation of large circuits. The few existing empirical

results are based on MIMD machines with only a small number of processors, typically

tens of processors. Thus, the speed-ups attained compared to sequential simulation are

severely limited. With the hardware resources available for High Performance Computing,

such as the 336 node Intel Paragon, and the 400 node IBM SP2, parallel simulation on

Massively Parallel Processors (MPP) is now feasible which can achieve a speed-up of up to

several hundred times compared to sequential simulation.

NECESSITY

The research will result in fast parallel simulation techniques which can achieve speed-

up of up to hundreds of times compared to sequential simulation. The proposed parallel

simulation techniques will provide an attractive solution to better throughput of the overall

design environment. Fast parallel simulation of large VLSI systems enables the designer to

validate the correctness of the design. The usage of behavioral simulation in an earlier stage

of the VLSI system design can prove the functional correctness. By speeding up the

performance model simulation, designer can carry out extensive HW/SW trade-off

analysis, and allow designers to select the best hardware architecture. The structural level

simulation can be used to validate the correctness in logic level and timing. The fast

simulator developed in this research will allow designers to validate various virtual

prototypes and to test complete fault coverage analysis. Thus, the design cycle can be

shortened, and the number of real prototypes to be constructed can be reduced. Parallel

simulation tools will allow 4X productivity improvement of RASSP goal.

PROGRAM

This program was funded by the DoD High Performance Computing Modernization

Office (HPCMO) under the Common High Performance Computing Software Support

Initiative (CHSSI), Computational Electronics and Nanoelectronics area. This area was led

by Dr. Barry S Perlman, U.S. Army CECOM, Fort Monmouth NJ. Preliminary research

was performed by the Army Research Laboratory (ARL) at Fort Monmouth as a joint

research effort. Several team members at ARL were involved in parallel simulation,

VHDL, and testing.

1. INTRODUCTION

1.1VHDL

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description

Language. It is an IEEE standard language used to describe the structure and behavior of

digital electronic systems. It allows the designer to describe how the electronic system is

decomposed into subsystems and how the subsystems are interconnected. It uses

programming language forms to specify the functions of a system. VHDL makes it much

easier to describe very large circuits and systems.

A big advantage of VHDL is that it allows testing and verification of designs using

simulations. The designer can simulate the behavior of a system using test inputs then

compare the resulting outputs to the requirement model of the system. The mismatch in

the comparison usually indicates design problems, thus enabling the designer to reexamine

the design and correct the errors.

1.2 PARALLEL VHDL

Many digital electronic systems used in current and future industrial and military

systems are too large to be effectively simulated on even state-of-the-art workstations.

Currently, performance simulation is extremely slow and is a major bottleneck for the

development of micro-electronic systems. Research conducted at Lockheed Martin under

DoD sponsorship has shown that simulation of only a portion of a digital signal processing

system can take over 20 hours. As should be expected, actually building systems or

prototypes is prohibitively expensive. The power of parallel machines, along with

appropriate software development, is therefore essential to the maintenance and upgrade

of existing systems and the development of future systems.

As a result, parallel simulation has attracted a considerable amount of interest.

However, most research on parallel simulation is restricted to symmetric multi-processor

machines or MIMD machines with a small number of processors. There are few

benchmark results available based on actual simulations of large circuits. The few existing

empirical results are based on MIMD machines with only a small number of processors,

typically tens of processors. Thus, the speed-ups attained compared to sequential

simulation are severely limited. To simulate a system with up to millions of processes, the

computational power of massively parallel processors (MPP) with several hundred

processors is necessary.

1.3 GOAL

The goal of the Parallel VHDL Simulation Project at Michigan State University was to

develop and implement a new and efficient paradigm for VHDL simulations on massively

parallel machines (MPP) and enable simulation speed-ups of up to two orders of

magnitude. The simulator uses MPI, a standard parallel communication protocol. The

developed parallel program is scalable and portable. From a user's point of view, the

output of this development effort is a fast parallel program that is able to simulate a large

digital system with up-to 100,000 VHDL processes at the performance level. By using this

simulator, designers may be able to prove the functional correctness of digital system,

assess the performance of candidate architectures of a digital system, and select the best

architecture that meets requirements. The design cycle thus can be shortened, and the

number of real prototypes to be constructed can be reduced.

In this project, a subset of VHDL constructs is selected to describe the performance

and behavioral models. These selected VHDL constructs are powerful enough to describe

the behavior and function of any hardware systems, yet simple enough so that models

written using these constructs can be efficiently simulated in parallel.

1.4 OBJECTIVE

The required software system is a behavioral simulator for digital micro-electronic

systems. The simulator accepts a VHDL description of a digital system to be simulated

and the test vectors. The output of the software is the values of signals and the event times

when such changes occur. VHDL is used widely to describe models of digital electronic

systems. The designer can simulate and validate the various levels of VHDL models from

the system level architecture to detailed design. Performance model is a term used to

denote the modeling in which the focus is on the behavior of the system in terms of

available resources and computational requirements (such as input rate, network queues,

and computational resources).

From a user point of view, the output of this development effort will be a fast parallel

program that will be able to simulate a large digital system with up-to 100,000 VHDL

processes at the performance level. Using the simulator designers may be able to prove the

functional correctness of digital system, assess the performance of candidate architectures

of a digital system, and select the best architecture that meets requirements. Thus, the

design cycle can be shortened, and the number of real prototypes to be constructed can be

reduced.

A subset of VHDL constructs was selected to describe the performance and

behavioral models. The VHDL constructs selected are powerful enough to describe the

behavior and function of any hardware systems, yet simple enough so that models written

using the constructs can be efficiently simulated in parallel.

The following issues have been addressed in the proposed research.

• Processor communication, synchronization

• Event queue manipulation

• Deadlock handling in conservative mechanisms

• Granularity of each computation between synchronization points

Using VHDL benchmark suites, the performance of the developed techniques on the

SP2 and Origin 2000 has been compared with that of other simulation techniques. The

performance of the proposed techniques was evaluated in terms of the following criteria:

simulation cycles, parallelism, maximum event queue size, speed-up, and memory space

reduction.

1.5 EXTENSIBILITY

Another goal of this simulation project was to ensure the portability and extensibility

of the simulations. The simulation kernel is completely separated from the simulation

object model. The simulation kernel only contains simulation protocol objects, such as

TimeWarp, SynchObj, and ChandyMisraObj, etc. It does not know what object model is

used to simulate the target system. On the other hand, the simulation object model does

not know the simulation protocols at all. It only defines how target system objects should

be translated into simulation objects. Thus once the target system has been translated into

simulation objects using the object model, the resulting C++ code may be run on any

parallel platform.

The end user only needs to select the parallel simulation protocol (TimeWarp,

SynchObj, etc.) and set up the initialization parameters. The simulation kernel will then talk

to the selected simulation protocol and run the simulation.

1.6 MAJOR TASKS

The following is a list of major tasks performed to implement the parallel VHDL

simulator:

• Design and implement the Simulation Object Model. Simulation objects will

inherit properties (such as member functions) from these objects.

• Select a subset of VHDL constructs that are critical to describe the

performance and behavioral models.

• Selected VHDL Construct Subset. The following VHDL constructs have been

selected as goals for the translation:

Delay Mechanism : transport delay and inertial delay.

Data Types: bit, integer, real, array types, record types, enumeration types,

constants.

Sequential Statements: signal assignment statement, variable assignment

statement, multiple waveforms in one signal assignment, if-then-else, for loop,

while loop, case statement, wait statement, logic/arithmetic operations.

Concurrent Statements: process statement with sensitivity list, concurrent

signal assignment statement, component instantiation statement, generate

statement, and conditional signal assignments.

These selected VHDL constructs are powerful enough to describe the behavior and

function of very complicated hardware systems, yet they are simple enough so that a

model written using these constructs may be efficiently simulated in parallel.

• Develop the Front End Interface which generates C++ programs from VHDL

descriptions using the object model. The task of the Front End Interface is

implementing these VHDL constructs. To translate VHDL into C++, the Front

End Interface has to face the following problems:

VHDL is a very complex and rich language. Translating its constructs requires

full understanding of its semantics and compiler techniques.

There is no direct mapping between the two languages. Some intermediate

form must be used before the translation is performed.

As a hardware description language, VHDL has some unique features, such as

the "wait" statement. To keep the correct semantics of these features, the

object model must implement mechanisms to support them.

The Parse Tree approach is a common method used to solve the translation

problem. Generally, a parser is used to parse the source language and generate

a parse tree. Translation is then performed by traversing the parse tree and by

publishing actions at each tree node.

The parse tree can be constructed using either the source or the target

language constructs, or some intermediate forms. The intermediate form

approach is also used in this project. The SAVANT [31,34] software package

is used as the basis to implement the Front End Interface. SAVANT has

developed a VHDL parser (SCRAM) and a set of intermediate forms (the

AIRE specification [33]), which is used to generate the parse tree.

Design and develop the general structure of Cockpit, the main module of

parallel simulator.

Develop algorithms and data structures of event queue handling for parallel

simulation.

Implement the Benchmark programs to measure the efficiency of parallel

programs. Perform benchmarking on SP2 and Origin 2000.

2. PARALLEL SIMULATOR
SYSTEM ARCHITECTURE

The simulation kernel of this project is designed to run general parallel

simulations. It is not designed only for VHDL simulations. The kernel is

implemented in C++. To simulate any real world system, a C++ description of

the target system must be provided. This description must include domain objects

and their interconnection information. The function of the Front End Interface is

to provide such C++ descriptions for the system to be simulated. The Front End

Interface has to use the pre-defined object model to generate the C++ code.

VHDL
Model

C++ models

C++ models
C++ models

^ C++ models
Tables

I
Parallel Code

c ' - --
_ Scheduler
o ■

c ■, -

]g Event Handler

P -:
i Communicator
t '

Figure 2.1 Parallel Simulator Block Diagram

10

2.1 MAJOR MODULES

The parallel VHDL simulator software suite is broken into five modules:

• Front End Interface, which generates C++ classes and object interconnection

information from VHDL descriptions, using the SAVANT scram VHDL analyzer.

• Partitioner, which distributes C++ objects into processing elements of a parallel

computer.

• Cockpit, which is the main program module of the parallel simulator. It reads input

(test) vectors, initializes modules, starts simulation, orchestrates other modules, and

detects the termination.

• Event Scheduler, which manages events and schedules them according to parallel

simulation protocols. For event handling and scheduling, it adopts a Time-Warp

mechanism.

When simulating VHDL systems, the Front End Interface will generate C++

code from VHDL source code. It will generate C++ classes corresponding to

VHDL objects and their interconnection information. This is basically a

translation from one language to another.

11

3. OBJECT MODELING

In practice, object modeling aims to be suitable for the representation and manipulation of

complex objects of engineering design. In most current simulation systems, users must

know the parallel platforms and the simulation technique to develop the model. As a new

simulation technique is invented and new hardware introduced, the models they developed

are not reusable, and must be modified. Moreover, the modeling techniques are different

for each application domain.

There has been much research work in modeling simulation. Several simulation

languages have been proposed including Simula, GASP, GPSS, CSIM, and Sim++. In

general, they can be classified into three different approaches:

• an approach which is limited into a specific application domain,

• a fixed model for discrete event simulation

• a new simulation language to model the objects

In these approaches, the application domain is limited and the system is not extensible.

Modifying simulation models frequendy requires changing the simulation scheme

employed. Moreover, adding a new simulation mechanism or modifying data structures

may affect the models already developed. For example, the Tyvis simulator [32] is

specifically targeted for parallel VHDL simulation using Time Warp. In this approach, all

objects are a subclass of Time Warp objects. Therefore, adding a new simulation scheme

requires changes of all models already developed. DEVS [29] has been proposed by

Ziegler as a model of distributed event simulation. All objects must be modeled under

DEVS formalism. Even though this approach may have the advantage of introducing the

formalism, it puts a burden on the modeler in a certain application domain. Simulation

languages such as Yaddes[21], Maisie[3], SIMA[23] and MOOSE[12,14] have been

proposed to aid the user to develop models. These languages are also associated with a

fixed set of pre-selected set of simulation mechanisms. Yaddes is a distributed event driven

specification language that resembles Yacc and Lex. A Yaddes program is translated into a

12

C program which is later linked together with a run time support library. SPEEDES [25] is

a C++ based simulation environment developed at the Jet Propulsion Lab which supports

sequential, Time Warp [15], and Time Bucket Algorithms. In SPEEDES, end users may

adjust a predefined set of parameters to improve the speed.

Only a few research results have been reported on the modeling and the performance of

parallel simulators. Maisie is developed for efficient execution of the simulator. Depending

on the hardware platforms, the complexity of the model, and the frequency of messages

generated, the performance of parallel simulation varies gready. Most of the parallel

simulators discussed above require the end user to provide their own models as the

simulation scheme changes. The only exception is Maisie. In Maisie, objects must be

defined using Maisie language.

Experience has shown that simulation is evolutionary in nature. While requirements

change, the system being simulated also changes. The modeling should be less resistive to

such changes, so the maintenance of the evolving system will be much easier [6]. In this

section, we outline our simulation engine that is developed using an object-oriented and

layered approach. Our proposed object modeling technique has the following features.

• It allows users to model complex objects which consist of different type of objects

with various level of complexity.

• It is simple so that the modeler should be able to model the objects in stepwise

refinement. The object modeling technique must provide a way of hiding the

information so that modelers and users are not overwhelmed by the details of the

objects.

• It separates models and simulation scheme so that modelers should be able to develop

models without knowing the simulation scheme employed.

• It provides a mechanism for parallel programmers to develop library modules and data

structures independent from simulation models.

13

3.1 OBJECT MODEL OF THE SIMULATION ENGINE

Our models are cleanly separated from the execution environment, and parallel platform.

There are three types of objects in our proposed modeling: Application Objects, Simulation

Objects, and Simulation Scheme Objects. Application Objects model the behavior of objects in

the application domain to be simulated. They can be developed by modelers of a specific

application domain, and are independent from the simulation schemes and hardware

platforms. Simulation Scheme Objects depend on simulation scheme used, and include all

library modules necessary to run the simulator on a parallel platform. They form the core

of the simulation engine, and are developed by parallel programmers with expertise in

Time Warp and Chandy-Misra schemes [19]. The system to be simulated consists of many

Application Objects. An end user selects the simulation scheme to be used, and instantiates

Simulation Application Objects (Simulation Objects in short). As shown in Figure 3.1, a

Simulation Object inherits behaviors and properties from Application Objects, and parallel

run time methods from the Simulation Scheme Objects. For example, 166MHz CPU and

200MHz CPU inherit their instruction set from the Pentium class object. To simulate a

computer system using Time-Warp, an end-user instantiates an object that inherits its

behavior from the 200MHz Pentium object, and its run-time environment and data

structures from TW-OBJ, a Time-Warp object.

Simulation Scheme Objects

Application Objects TW Kernel CM Kernel Svnc Kerne)

TWObj CMOBj SyncObj

MMX Pentium Intel 486DX

Z3Z
166MHz 200MHz

Model developer
muftijjle Inheritance

Parallel Proarammer

AppObj

Figure 3.1 Object Models

14

The modelers populate the libraries of object models independent from the simulation

scheme. The rationale of our approach is to allow the front end user to use the application

objects developed by the modeler freely. Our object modeling technique provides freedom

to three parties of the simulation arena: modelers, parallel programmers, and front end

users. Parallel programmers (simulation scheme experts) may concentrate on providing

various parallel simulation methods. In other words, once the modeler develops

Application Objects, the same objects can be simulated with other simulation schemes,

without remodeling them for the new simulation scheme.

Application Objects are organized using the inheritance mechanism among them.

Therefore the modeler, with minimum knowledge of modeling language and object

oriented modeling, is able to create a library of objects. The front-end user, who simulates

the system, mixes and matches the models developed by modelers and the simulation

scheme developed by parallel programmers. The simulation scheme class defines the data

and methods that each simulation object needs to operate within the system. This class can

be viewed as the kernel of the simulation and any type of the simulation domain can use

that scheme via its interfaces. Depending on a particular simulation scheme, a simulation

scheme object is created. The simulation scheme objects include all the necessary methods

for that specific scheme.

A Simulation Application Object (Simulation Object) is an instance of a class that is

obtained from integration of the Application Object class and Simulation Scheme class. It

contains the implementation of the methods of the simulation scheme inherited from

Simulation Scheme Objects. It inherits its behavior and attributes from Application

Objects. For the simplicity of implementation and portability, we used the template class

approach rather than the multiple inheritance mechanism. A Simulation Object is

responsible for simulating the single object and generating events.

The following class definition shows the skeleton of an Application Object. Other

instance variables, member functions, and class relationships can be added into the

15

definition. If the parent class of the object has member functions of instance variables, the

object does not need to include these fields. Consider the following example. We want to

model an 8-bit ALU in the design of 8-bit microprocessor. All components of an 8-bit

microprocessor share common characteristics, such as design rules, bus width, minimum

gate delays etc. Therefore it is a subclass of 8-bit components. Suppose that the behavior

of the 8-bit ALU has the following specifications: 8-bit Input port and Output port, 6-bit

control line, and 8-bit addition and subtraction. Later ALU8M can be modeled which is a

special case of ALU8 by providing multiplication and

division operations. This specialization can be accomplished

by making ALU8M a subclass of ALU8, and

inheriting operations of ALU8M from ALU8:

8-bit components

Shift Register

X
ALU8

ALU8M

Here is the sample code for the ALU object:

class ALU8 {
public: // Methods that simulates the behavior of the object

void addO;
void subtractO;
void exceptionO;
void executeProcessO; }j

class UserState : public BasicState { // input and output port of the object
InSignal<int> x[8], y[8], opcode[2]; //opcode denotes the operation
OutSignal<int> 2 [8]; };

The method executeProcessO simulates the behavior of the object. This is the main

part of the modeling and the modeler just needs to plug the behavior of the object into the

class definition, by conforming to the names that are declared within the class. In this

sample code, we declare two other functions, add() and subtractO that are used within

executeProcessO method.

To create a model of an ALU with more functions, such as multiplication and division, we

can simply model by inheriting from ALU8:

class ALU8M : public ALU8 {
public:
void multiplyO;
void divideO;
void executeProcessO;};

16

To simulate the ALU8M, the behaviors of the 8-bit ALU such as add, subtract, and

exceptions are inherited from the class of ALU8. ALU8M has its own functions, multiply

and divide, which are not defined in ALU8. Moreover, ALU8M can implement its own

methods for ADD and SUB.

The sample C++ code is provided as follows:

void ALU8M::executeProcess() {
switch (opcode) {

case 0: add 0> break;
case 1: subtract^; break;
case 2: multiplyO;break;
case 3: divide 0;break;
default- exceptionO;break; }

}

3.2 SIMULATION ENGINE: LOGICAL PROCESS AND SIMULATION

OBJECT

Each processor is an instance of a logical process (LP), which is the simulation engine of

the processor. Logical Process is responsible for the global flow-control of the simulation.

It instantiates the simulation objects assigned to that particular processor. During the

Character

stream

communication
manager

/

input
buffer

Dispatcher
Events ^»i*-*»«»

GVT Message

GVT Manager

A" output
buffer

Simulation
Object

List

Scheduler

GVT Message

Collector
Subset or objects

Figure 3.2 Logical Process

execution of the simulator, LP handles the communication of simulation objects via

messages, schedules events by selecting simulation objects to be executed in next

17

Simulation cycle, and computes the Global Virtual Time. The LP object depends on the

simulation scheme. It consists of Simulation Scheme Objects. Figure 3.2 shows the LP

object organization. The Scheduler schedules events based on scheduling policy.

Dispatcher reads input messages from the buffer and places events into the event queue of

the corresponding simulation object. Messages to be sent are handled by the collector,

which aggregate messages and send them according to the communication policy.

3.3 PARTITIONING

We have developed three different partitioning schemes: random, level, and duplication.

In random partitioning, objects are assigned to processors randomly so that each processor

has an equal number of objects. In level partitioning, objects are partitioned according to

depth such that objects in the same depth (from the primary input) are assigned to the

same partition. It is well known that random partitioning in general has good performance.

We achieved similar performance except a few cases, in which case we used level

partitioning. Another scheme we have used is duplication of objects. If a certain object,

particularly an input object, has a high output degree then it is much better to duplicate the

object. Indeed duplicating objects increases the activity rate and significantly improves the

speed of parallel simulation.

18

4. FRONT END USER INTERFACE

The Front End Interface analyzes VHDL source and generates C++ according to the

Simulation Object Model, particularly application objects and simulation objects. The

major purpose of the Front End Interface is to translate VHDL descriptions into C++

code according to the simulation object model. The Simulation Kernel will then compile

and link with the C++ code to simulate the VHDL system.

The SAVANT software package is used as the basis for the Front End Interface.

SAVANT has implemented a VHDL analyzer to parse the VHDL source code and

generate a parse tree using the Intermediate Forms defined by the AIRE standard.

SAVANT has also implemented a C++ Publisher, which uses the parse tree to generate

C++ code for the TyVIS VHDL simulation kernel. TyVIS is not compatible with the

simulation kernel of this project. As a result, the C++ code can not be used. The

SAVANT C++ Publisher was then modified to generate C++ for this project.

SAVANT implements the AIRE standard using a layered approach. The C++

Publisher is implemented at the IIRScram layer as a virtual function _publish_ccQ. To

modify the publisher, an IIRPvhdl layer is added to the SAVANT class hierarchy. The

_publish_ccQ function is overloaded in this layer so that the _publish_cc() of the

IIRScram layer is shadowed. When the publisher is called again, the _publish__cc()

function in the IIRPvhdl layer is called to generate C++ code for our own simulation

kernel.

A subset of critical VHDL constructs have been selected and implemented by

modifying the SAVANT Publisher. Many tests have been conducted on these constructs to

ensure their semantic correctness. Up to now, 47 IIRPvhdl layer classes have been added

to the SAVANT class hierarchy and about 6000 lines of C++ code has been developed.

19

In this project, simulation objects are separated from the simulation kernel, which

handles different parallel simulation protocols. This ensures the extensibility and portability

of simulations. On the other hand, using Intermediate Forms (AIRE) enables the

translation between languages with no direct mapping (VHDL and C++). Also, adding an

extra layer (IIRPvhdl) into the SAVANT class hierarchy modifies the behavior of the

SAVANT Publisher without changing the SAVANT source code. This makes upgrading to

new version of SAVANT much easier.

A big drawback of this approach is that each time a change is made to the source code,

the program has to be recompiled and linked again to generate the new executable file.

Because the size of the executable file is quite large (35MB), this process usually takes a

very long time (tens of minutes). This greatly reduces the efficiency of user modifications.

SAVANT is also an on-going project. It still does not support some VHDL features, such

as bus signals. This software package also contains some bugs.

4.1 THE OBJECT MODEL

This section describes the details about the Object Model. The object model defines a

"BasicObject" class which characterizes the common features of all simulatable objects.

When translating a target system into simulatable classes, the BasicObject class should be

used as the parent class of all resulting simulatable classes. The BasicObject class defines

input signals, output signals, states, and a method called executeProcess(). Through the

input and out signals, BasicObject classes can interact with each other. States are used to

keep private information for the BasicObject itself. The executeProcess() method describes

the behavior of the object (how the output signals should be changed according to the

input signals). The input signal, output signal and state are also classes defined by the

object model. All signals and states must be "registered" before they can be used. Please

refer to section 3 for details about the BasicObject class, the signal classes, and the state

class.

When translating a VHDL system into C++ code, each VHDL process is translated into a

20

simulatable class. The "in" signals in the VHDL process are translated into the input

signals in the simulatable class. The NXout" signals are translated into output signals. The

process variables are translated into states. The sequential statements of the VHDL process

are translated line by line into the executeProcessO method.

Generally, each C++ class has the following items:

Declaration of input/output signals and states.
Registration of input/output signals and states.
Initialization of input/ output signals and states.
The executeProcessO method.

FORMAT OF OBJECT CLASS

The basic format of a class is like this: its declaration shows BasicObject is its parent class;

it has a data declaration section, a constructor, and a executeProcessO method. All data

members and methods are defined as public (so that the simulation kernel can access them

directly). In the constructor, all signals and states are registered and initialized.

The following code shows an example C++ class generated using the object model. This

example only shows a general structure of the object model C++ classes, it is not the exact

code. Appendix B shows the VHDL source code of an AND gate. The exact C++ code

for this AND gate is shown in Appendix C.

class DFF : public BasicObject
{ public:

InSignal D, CLK; // declarations
OutSignal Q;
State prev;

DFF(): BasicObjectO { // registrations
registerlnSignal (&D);
registerInSignal (&CLK);
registerOutSignal (&Q);
registerState (fcprev);

D=X; CLK=X; prev=X; // initializations
Q=Y;

21

void executeProcess () { // actions
int val;
if (hasEvent(&D) && (CLK == '1')) {

val = D;
if (prev != val) {

prev = val;

if (prev == '0') D = 0;
else if (preve == '1") D =1;
else D = val;

} } }
};

VHDL variables are declared within processes (global variables have not been

implemented yet) and are translated into "states". In contrast to signals, states are declared

without a prefix. For example, if a VHDL process declares a variable as: variable a : bit,

its C++ declaration is SavantbitType a.

Signals and variables can have initial values. It is in the constructor that their initial

values are granted. Later sections will address the issue on how to find which signals and

variables are used by a process and how to retrieve their initial values.

The Constructor

The class constructor will register signals and variables and set their initial values.

To register signals and states, the constructor will call functions declared in the

BasicObject class. Table 4.1 shows these functions.

Input Signal RegisterlnSignal(&signal, sizeof(signal))
Output signal RegisterOutSignal(&signal, sizeof(signal))
State registerState(&state, sizeof(state))

Table 4.1 Functions For Signal/Variable Registration

No special function needs to be called to initialize signals and states. The simple

C++ assignment operator is used. For example, if the initial value of signal a is 0, a is

22

initialized by a = 0. If the signal or state doesn't have an initial value, system defined initial

values are used. Table 4.2 shows the predefined initial values.

These initial values are defined in file SavantGlobal.h shown in Appendix D.

Signal/State Initial Value Definition
Input signal X #define X-l
Output Signal Y #define Y-l

State X As Above

Table 4.2 System Defined Initial Values

THE EXECUTEPROCESS0 METHOD

The executeProcessO method of the object class describes the actions of the

VHDL process. It is a line to line translation of VHDL statements to C++ code .

A VHDL process is composed of VHDL sequential statements, such as signal

assignment statement, variable assignment statement, if statement, etc. These VHDL

language constructs all have corresponding IIR representations. The way to translate these

VHDL language constructs into C++ code is to call the _publish_cc() function in their

corresponding IIR nodes in the IIR parse tree. Since each IIR class has its own

_publish_cc(), different semantics of different VHDL constructs can be translated by

implementing the _publish_ccQ method differendy. Later sections will describe this

approach in detail.

The executeProcessO method is defined in the BasicObject class. The simulation

kernel simulates the VHDL description by calling the executeProcessO method of each

VHDL simulation object.

MODIFICATION GUIDELINES

In the SAVANT project, the IIRBase layer and the IIR layer are

23

well defined by the AIRE standard. They are well documented by the AIRE standard [33].

The IIRScram layer implemented the VHDL Analyzer and the Publisher. This layer

contains most of the programming tasks. However, this layer is very poorly documented.

Actually there is no documentation at all which describes the programming details of the

IIRScram layer.

The C++ code is generated by traversing the IIR parse tree.

The information collected by the Analyzer has to be used to perform the publication.

Since the IIRScram layer has no documentation, the only way to find out all this

information is to use a debugger to trace through the program. In this project, the GNU

gdb is used to debug the SAVANT executable file, Scram. The basic debugging process is

to first set a break point at the _publish_cc() method of the IIRScram class being

modified, then trace into all pertinent sub-routines and relevant data members. There are

227 IIR classes defined and the size of the Scram file is about 35MB. Thus the process of

using a debugger to debug the file to find out some information can be extremely time

consuming and painful.

The following are the general steps taken to modify the SAVANT publisher:

• Look at the AIRE standard to find out what public data member and public functions

are declared by the target IIRBase class. These data and functions will be used in

generating the C++ code.

• Debug the _publish_cc() function of the target IIRScram class to see how this

information is used.

• Create a new IIRPvhdl layer class which implements a new _publish_cc() method to

shadow its corresponding IIRScram layer class.

4.2 Implementation Details

This section discusses the details of how the IIRPvhdl layer classes are generated.

As mentioned earlier, this project tries to handle only those VHDL constructs that are

deemed as essential to VHDL simulation. It does not try to handle all VHDL language

24

constructs. This section will use the VHDL construct as the unit of discussion.

How to Publish

SAVANT defined a utility class called "switch_file". This class deals with input/output

streams. It defines a method

void set_file(char *name, char *ext), which is used to set the name of the output file for

the Publisher. If a file with the name "name.ext" already exists, future outputs of the

Publisher will be appended to the end of this file. Otherwise, a new file with that name is

created and future outputs of the Publisher will be written to the new file. In

IIRScram.hh, two global variables are declared as follows:

extern switch_file _vhdl_out; //file for vhdl output
extern switch_file _cc_out; //file for c++ output

The IIRScram class is the root of the IIRScram layer classes. Thus the above two

global variables could be accessed by any IIRScram class. The _vhdl_out is only used to

publish VHDL source code, while the _cc_out is only used to publish C++ code. For

example, to publish code "i +=1;" to file "test.cc", you only need to do the following:

_cc_out.set_file(wtest", ".cc");
_cc_out << wi += 1;";

Any IIRPvhdl layer class is derived direcdy from a IIRScram layer class. As a

result, all IIRPvhdl layer classes can also access _cc_out and publish C++ code to a

named file.

Where to Publish

In SAVANT, each class corresponding to a VHDL process will generate two files,

25

a ".hh" file and a "cc" file. When all the C+ + files have been generated, a "Makefile" is

created to tell the TyVIS simulation kernel how to link all the files together.

In this project, all C++ code is published in the file "Classes.h". The constructor

and the executeProcess() method are all inline functions. Thus there is no need to create

a Makefile. The simulation kernel can simply include the "Classes.h" file to get all class

definitions.

The included file is compiled together with simulation objects and utilities we have

developed.

How to Insert an IIRPvhdl Class

The sole purpose of adding an IIRPvhdl layer is to shadow the _publish_cc()

functions of the IIRScram layer classes. To do this, an IIRPvhdl layer class has to be

derived direcdy from the IIRScram layer class. The IIR layer class will then be derived

from the IIRPvhdl layer class instead. Thus when an IIR layer node calls the

_publish_ccO function, it will call the _publish_cc() declared in the IIRPvhdl layer class,

not in the IIRScram layer class.

As an example, let's look at how to insert the IIRPvhdl_ProcessStatement class

between the IIRScram_ProcessStatement and the IIR_ProcessStatement class. The original

IIR ProcessStatement.hh is like this:

#include "IIRScram_ProcessStatement.hh"

class IIR_ProcessStatement : public
IIRScram_ProcessStatement {

• • •
}

After adding the IIRPvhdl_ProcessStatement class, the
IIR_ProcessStatement needs to be derived from the
IIRPvhdl ProcessStatement class. The

26

IIR_ProcessStatement.hh is then modified like this:

#include "IXRPvhdl_ProcessStatement.hh"

class IIR_ProcessStatement : public
IIRPvhdl_ProcessStatement {

On the other hand, the IIRPvhdl_ProcessStatement has to be derived directly
from the IIRScram_ProcessStatement class. The IIRPvhdl_ProcessStatement.hh looks like
this:

#include "IIRScram_ProcessStatement.hh"

class IIRPvhdl_ProcessStatement : public
IIRScram_ProcessStatement {

}

Other IIRPvhdl layer classes should be added to the class hierarchy in a similar

manner.

The IIRPvhdl_DesignFile Class

The predefined IIR_DesignFile class represents the textual contents of a design

file. These contents may include one or more IIRJLibraryUnits and/or one or more

IIR_Comments. The IIR_DesignFile class defines a public data member

IIRJLibraryUnitList library_units. This data member is a list of entity declarations and

architecture declarations which cluster all VHDL library units into a design file together, so

that they could be accessed one by one.

The IIRPvhdl_DesignFile class has basically 3 functions:

• Use preprocessor #ifhdef... #define to protect the "Classes.h" file.

• Include some "h" files and use "typedef' to define some data types, like

27

SavantbitType, SavantintegerType, and SavantrealType.

• Call library_units._publish_cc() to let the lower level tree node publish C++ code.

The implementation of this class is pretty straightforward. Please refer to [34,

IIRPvhdl_DesignFile.hh, IIRPvhdl_DesignFile.cc] for details.

The _publish_ccO method of IIRScram_LibraryUnitList is not overloaded

because it has already done the correct things. This method goes through each library unit

in the list and calls their _publish_cc() method. This is the desired behavior of the

_publish_cc() for IIR_LibraryUnitList. As a result, there is no need to define an

IIRPvhdl_LibraryUnitList class to shadow the IIRScramJLibraryUnitList class. For

implementation details of the IIRScramJLibraryUnitList class, please refer to [34,

IIRScram_LibraryUnitList.hh, IIRScram_LibraryUnitList.cc].

From here we can see that if the _publish_cc() function of an IIRScram layer

class has implemented the desired functions, then there is no need to define its

corresponding IIRPvhdl layer class to shadow it. As a result, not every IIRScram layer class

has a corresponding IIRPvhdl layer class.

The IIRPvhdl_EntityDeclaration Class

The predefined IIR_EntityDeclaration class represents VHDL entities. It is a child

class of the IIR_LibraryUnit class and contains several predefined public data elements

shown in Table 4.3.

DATA MEMBER TYPE DATA MEMBER NAME

IIR_GenericList Generic_clause
IIR_PortList Port_clause
IIR_DeclarationList Entity_declarative_part
IIR_ConcurrentStatementList Entity_statement_part

28

IIR_DesignUnitList Architectures

Table 4.3 Predefined Public Data Elements of
IIR_Entity Declaration

These data elements are all lists which keep entity related information, such as

generic declarations, ports, etc. The IIRScram_EntityDeclaration class uses all of them in

its _publish_cc() method. None of them have been used in this project so far. The

desired behavior of the IIR_EntityDeclaration is to publish nothing at all. Thus the

_publish_cc() method of IIRPvhdl_EntityDeclaration class is just empty.

It is possible to make changes to this class if new features

need to be implemented in the future, such as generic constants. It probably would require

corresponding changes in other parts of the front end interface. This is left to the decision

of future participants of this project.

The IIRPvhdl_ArchitectureDeclaration Class

The predefined IIR_ArchitectureDeclaration class represents one of several

potential implementations of an entity. Like the IIRJBntityDeclaration class, it is also a

child class of IIR_LibraryUnit.

The IIR_ArchitectureDeclaration Class has several predefined public methods and

public data elements. Among them, the IIR_EntityDeclaration * get_entity() method

retrieves the pointer to the entity to which the architecture is associated. The

IIR_ConcurrentStatementList architecture_statement_part data member is a list

pointing to all the current statements in the architecture body.

The IIRPvhdl_ArchitectureDeclaration class does two things. First, it prints a

message to the standard output showing the name of the architecture being processed.

Second, it calls the _publish_cc() method of architecture_statement_part which causes

the higher lever nodes in the parse tree to publish. The first task is performed by

29

printing the names to standard output "cerr". To get the name of the architecture, the

_get_declarator() function is called. This function is defined as a virtual function in the

IIRScram class. It can be used by any node in the parse tree to get its declarator string.

The implementation of this class is straightforward. For details please refer to [34,

IIRPvhcU_ArchitectureDeclaration.ee].

The Process Statement

The SAVANT predefined IIR_ProcessStatement class represents a sequential

declarative region and single thread of execution. Such processes must appear within an

architecture, concurrent block statement or concurrent generate statement.

The VHDL process is the translation unit of the C++ publisher. Each process will

be translated into a simulation class. In the simulation class, signals and variables that are

used in the VHDL process are translated into C++ data elements and registered to the

simulation kernel. This section discusses how to translate VHDL process into simulation

class.

DATA ELEMENTS

There are two predefined public data elements in IIR_ProcesssStatement class:

• IIR_DeclarationList process_declarative_part, which is a list of declaration items,

such as local variables.

• IIR_SequentialStatementList process_statement_part, which is a list of all

sequential statement in the process.

The IIRPvhdl_ProcessStatement.hh declares several public and private data

elements. There are two public data elements:

• IIR_Char *class_name, which is a character pointer used to keep the name of

30

this class. This information will be used when generating the interconnection

information.

• IIR_Int32 class_id, which is an integer used to keep the ID of the class. In the

_publish_cc() method of IIRPvhdl_ProcessStatement class, a variable static int

type_id=0 is declared to generate an unique ID for each simulation class. The

class_id uses the value of type_id. It will be used in generating interconnection

information.

The IIRPvhdl_ProcessStatement.hh declares five private data elements. They are all

used as local variables. These data elements are:

• set<IIR_Declaration> sig_in_list, which is the set for input signals.

• set<IIR_Declaration> sig_out_Iist, which is the set for output signals.

• int in_sig, which is used to count the total number of input signals.

• int out_sig, which is used to count the total number of output signals.

• int state_num, which is used to count the total number of states.

These variables will be used when publishing the constructor of the BasicObject class,

which needs to know the number of input/output signals and states in the VHDL process.

INPUT/OUTPUT SIGNALS

Before further discussion, it is necessary to define "input" signal and "output"

signal first. In a VHDL process, if the value of a signal is referenced, this signal is an input

signal. For example, signals appearing on the right hand side of signal assignment

statements or "if statements are input signals. If a signal's value is changed in the VHDL

process, it is an output signal. For example, signals appearing on the left hand side of signal

assignment statements are output signals. It is possible that a signal is both an input signal

31

and an output signal. For example, signal a in VHDL statement "a <= not a" is both an

input signal and an output signal.

In VHDL, both the entity declaration statement and architecture declaration

statement declare signals. Within an architecture body, there could be several processes.

This means a VHDL process may not cover all signals declared by the architecture. Only

those signals that are covered by the process should be translated when translating this

process into a simulation class. This presents the problem of finding what signals are used

by the process.

The SAVANT VHDL Analyzer has solved this problem. In IIRScram.hh, a virtual

function:

void _get_list_of_input_signals(set<IIR_Declaration>* list)

is declared. Its function is to add pointers of all input signals associated with an IIR node

to "list". Since "list" is defined as a set object, the same signal pointer will be added to the

set only once (please refer to [34, set.hh] for details). This function is overloaded by all

other IIRScram layer classes.

The IIRScram_ProcessStatement class defines this function like this:

void IIRScramJProcessStatement::
_get_list_of_input_signals(set<IIR_Declaration>* list) {

process_statement_part._get_list_of_input_signals(list);
}

The process_statement_part data element is of type

IIR_SequentialStatementList. In the IIRScram_SequentialStatementList class, the above

function is defined as follows:

void IIRScram_SecruentialStatementList::

32

_get_list_of_input_signals(set<IIR_Declaration>* list) {
IIR_SequentialStatentent* stmt = first ();
for(; stmt != NULL;) {

stmt->_get_list_of_input_signals(list);
stmt = successor(stmt);

}
}

As a result, each sequential statement in the VHDL process will call its

_get_list_of_input_signals() to put its input signals into "list". Similarly, another virtual

function: void _get_signal_source_info(set<IIR_Declaration>* siginfo) is defined in

IIRScram.hh to collect output signals using set.

The set utility class defines a function named make_list(). This function first

creates a list that contains all data in the set then returns the pointer of the list. After the

input signal set and the output signal set have been obtained, the two sets call the

make_list() function to create two signal lists.

In file IIKPvhdl.hh, two global variables are declared to keep the two lists:

extern dl_list<IIR_Declaration> *_proc_in_sig_list;

extern dl_Hst<IIR_Declaration> *_proc_out_sig_list;

These two signal lists will be used by other IIRPvhdl layer classes, such as

IIRPvhdl_IndexedName. In SAVANT, it is possible that the same array element appears

more than once in the input or output signal list. The reason is that SAVANT generates an

IIR_IndexedName node each

time it encounters an array element signal. For other of signals, SAVANT generates only

one IIR node, no matter how many times this signal appears. For example, for the

following VHDL process:

process begin
a <= c and arr(l);
b <= c or arr(l);

end process;

33

SAVANT generates only one IIR node for "c", but two IIR nodes for "arr(l)".

When generating the input signal set, there is only one IIR node for "c" added to the set.

But there are two "arr(l)" IIR nodes added. This may seem strange. The reason Savant

does this is that TyVIS requires different object for different array element. Since the

SAVANT publisher is TyVIS oriented, it handles this situation in this strange way.

In our project, only one array element should be put in the signal list. As a result, a

function named: Void _clean_sig_list_for_identicaI_eIements(dl_list<IIR_Declaration>* list) is

defined in IIRPvhdl.hh. The function of this method is to remove multiple copies of array

elements from a signal list. Its implementation will be discussed in later sections. After

calling make_list() to get the input signal list and the output signal list, the

_clean_sig_list_for_identical_elementsO function is called on both signal lists.

WAIT STATEMENT LIST

A VHDL process usually contains a wait statement. There is no language

construct in C++ which directly corresponds to the semantics of the VHDL wait

statement. As a result, wait statement has to be implemented according to its semantics.

In SAVANT, for each process, it is necessary to find out the number of wait

statements and keep them in a list. To achieve this, SAVANT defines a virtual function:

void Jbuild_wait_list(dl_list<IIRScram_WaitStatement> *) in the

IIRScram_SequentialStatement class. Since IIRScram_SequentialStatement class is the root

class of all sequential statement classes in the IIRScram layer, each sequential statement

class will inherit then overload this function. For example, both IIRScram_IfStatement

class and IIRScram_WhileStatement class are a child class of the

IIRScram_SequentialStatement class. They may all contain a wait statement. As a result,

they all overload the _build_wait_list() function.

34

The IIRScram_ProcessStatement class defines a public data element named

dl_list<IIR_WaitStatement> _wait_stmt_list to keep the wait statement list. To build

the list, a while loop is used to call the _build_wait_list() function of each sequential

statement node in the process_statement_part data element.

The code is as following:

stmt = process_statement_part.first();
while (stmt != NULL) {
stmt-> _build_wait_list ((dl_list<IIRScram_WaitStatement>
*) &_wait_stmt_list) ;
stmt = process_statement_part.successor(stmt);
}

Details on how to handle the wait statement will be discussed in later sections.

NAME OF CLASS

Since each VHDL process is translated into a class, it is important that they all

have different names. To achieve this, the _publish_cc() method of

IIRPvhdl_ProcessStatement class defines a static integer type_id. The initial value of

type_id is 0. Each time after publishing a class, the value of type_id is increased by one.

Since type_id is used as part of the class's name, each class will have a different name.

The naming scheme of a class is like this : "current architecture name" plus "_of_"

plus "current entity name" plus "_class" plus "type_id". The name of the class is stored by

the class_name data element described above. Also, each class name and its

corresponding "type_id" is written to a file named "Classes.id" for examination purpose.

PUBLISHING CLASS HEADER

As discussed in previous sections, _cc_out is used exclusively to publish C++

code. The first thing in publishing the code is to set the output file name to "Classes.h".

35

The first line of code should be the class header, like: class class_name : public

BasicObject. This could be done easily by the following code:

_cc_out.set_file("Classes", n.hn);
_cc_out « "class " << class_name << " : public

BasicObject" << "\n";

Other C++ code could be published in the same way. It is not necessary to set the

publishing file to "Classes.h" each time new code is written to that file. Only when the

publishing file name is changed is it necessary to change the file name back to "Classes.h".

Also, don't forget to write "endl" to start a new line in "Classes.h".

SIGNAL DECLARATIONS

Signal declarations in the class are not different from the common "type + name"

format. There are two kinds of signals, input signals and output signals. As described

above, global variable _proc_in_sig_list is the list of input signals and

_proc_out_sig_list is the list of output signals of the VHDL process being translated.

To publish these signals, it is necessary to go through the two lists to publish the type and

name of each signal.

The IIRPvhdl_ProcessStatement class has defined two functions,

_publish_cc_in_sig_declO and _publish_cc_out_sig_decl(), to publish input signals

and output signals respectively. For input signals, a prefix "in_" is put to the name of each

signal. For output signals, a prefix "out_" is put to the name of each signal. The reason for

adding prefix is that one signal could be both an input signal and an output signal. In the

simulation object model, these two types of signals are implemented differendy. As a

result, this signal has to be described by one input signal and one output signal. The prefix

is used to distinguish the two signals.

To publish the type of the signal, IIRScram.hh has defined a virtual function void

_publish_cc_type_nameQ. For each signal declaration, this function will publish the type

of the signal using _cc_out. In general, SAVANT puts a prefix "Savant" and suffix

36

"Type" to each VHDL type. For example, the VHDL "bit" type will be published as

"SavantbitType". Previous sections have discussed how to implement three basic VHDL

data types in C++.

Each time an input signal is published, it is necessary to increase the input signal

counter in_sig by one. For array types, it is necessary to add the total number of elements

in the array to the counter. To get the size of the array, the

IIRPvhdl_ArraySubtypeDefinition class has defined a function int

_get_array_total_element_num()- This function simply multiplies each dimension of the

array and returns the product. Details on implementing VHDL array types will be

discussed later.

SAVANT has defined a virtual function IIRJBoolean _is_array_type() in

IIRScram.hh. Its function is to determine whether a IIR node is of array type. IIR nodes of

array type will return a boolean value true, all other IIR nodes will return false. By calling

this function for each signal, it can be determined if this signal is an array type.

The last thing to mention is using single array elements as input signals. In

SAVANT, if the value of an array element is referenced as an input signal, the whole array is

put into the input signal list (not that particular array element). This is not the desired

behavior in this project. As a result, the IIRPvhdl_IndexedName class has overloaded the

_get_list_of_input_signalsQ function so that single array element is put into the input

signal list. Details about the IIRPvhdl_IndexedName class will be covered in later sections.

The problem here is how to publish the name of the signal array element. The index of the

array element is used as part of the name for that signal. For example, if array element

arr(l,2) is in the input signal list, the name of this signal will be "in_arr_l_2". To determine

whether a signal is an array element, the IIR predefined get_kind() function can be used.

If the return value of this function is "IIR_INDEXED_NAME", the signal is an array

element. We can then use the above naming scheme to publish it.

37

VARIABLE DECLARATIONS

SAVANT did not implement a way to get a "variable list". To find out what

variables have been declared in a VHDL process, the process_declarative_part data

element of IIR_ProcessStatement must be used. The type of "process_declarative_part" is

"IIR_DeclarationList". It is the list of declaration items in the process. It may contain

type declarations and variable declarations. To see if a declaration item is a variable

declaration, we can use the predefined "get_kind(}" function to get its type. If the return

value is "IIR_Variable_Declaration", this item is a variable declaration.

We can then publish this declaration item as a variable.

Publishing variable declarations is similar to publishing signal declarations. The

only difference is that no prefix is added to variable names. Also, each time after

publishing a variable, the counter "state_num" must be increased. The same rule about

array size applies for variable arrays.

THE CONSTRUCTOR

After publishing signal and variable declarations, the next step is to publish the

constructor. Since "BasicObject" is the parent class of each simulation class, it is necessary

to call the constructor of "BasicObject". The constructor of BasicObject uses the number

of input signals, output signals, and states in the VHDL process as parameters (this is why

counters "in_sig", "out_sig" and "state_num" are declared).

The constructor basically has two tasks: to register signals and variables, and to

assign initial values to them. The way to publish signal registrations is similar to publishing

the signal declarations. The _proc_in_sig_list data element is used to publish input signal

registration, and the "_proc_out_sig_list" is used to publish output signal registrations.

The process_declarative_part is used to publish state (variable) registrations.

If there is an input signal in_a, an output signal outjb, and a variable

38

c, then registerInSignal(&in_a), registerOutSignal(&out_b) andregisterState(&c)

should be published to register them respectively. These three functions are declared by

the "BasicObject" class.

To get the initial value of a signal, the predefined "get_value(}" function is called.

This function returns an IIR type pointer pointing to the initial value expression. If the

returned pointer is not NULL, its _publish_ccQ function can be called to publish the

signal's initial value. Otherwise, the rules discussed in previous sections are used to set the

initial value of the signal. The same approach applies to setting variable initial values.

THE "WAIT FOR" SIGNALS

Two extra signals, in_wait_for_signal and out_wait_for_signal are declared

exclusively to handle the VHDL wait statement. The two signals are of type

SavantbitType. The first signal is an input signal, the second signal is an output signal.

Their initial values are both 0. These two signals are not signals declared by the VHDL

process. They are extra add-on signals for each simulation class. The reason to add them

will be cleared up in later sections.

It is important to know the registration of these two signals should be put to the

last part of the signal registration section.

As a result, they will be put to the end of the input and the output signal list of the

simulation object. On the other hand, these two signals are connected directly when

generating the interconnection information [24].

THE EXECUTEPROCESS() FUNCTION

The executeProcessO function is a line to line translation of the sequential

statements in the VHDL process. To publish all the sequential statements, the

_publish_ccQ function of _process_statement_part is called.

39

Before calling the process_statement_part._publish_cc(), the system-publishing

prefix is set to "inj" by calling the void _set_publish_prefix_string() function defined in

IIRScram.hh. Once the system publishing prefix is set, all signal or variable names will

contain this prefix when they are published. In most cases, the sequential statements in a

process will reference an input signal, thus the prefix is set to "in_". When publishing the

output signals, the system-publishing prefix needs to be changed temporarily to "out_".

After calling process_statement_part._publish_cc(), the system publishing prefix needs

to be restored to its original value.

In addition, a static integer "P" is also declared in executeProcess(). The purpose

of this variable is to handle the VHDL "wait" statement. It will be covered in detail in the

section discussing the VHDL wait statement.

The IIRPVHDL Class

The IIRPvhdl class is the root class of the IIRPvhdl layer. The reason to add this

class is to declare some global data elements and public functions for the IIRPvhdl layer

classes. The following data and functions are declared in the IIRPvhdl class:

• dl_list<IIR_Declaration> *_proc_in_sig_list, which is a global variable used to

keep the input signal list of the current VHDL process being published.

• dl_list<IIR_Declaration> *_proc_out_sig_list, which is a global variable used to

keep the output signal list of the current VHDL process being published.

The way this and the above variable is used has been discussed in previous sections.

• IIR_Boolean _is_identical_with(IIR *obj), which is a function used to test whether

obj and the current IIR node (*this) have the same name. The way to determine this is

to use strstream to print out the names of these two objects. If the names are the

same, then the function returns "true". Otherwise, the function returns "false".

40

• int _get_position_in_list(dl_list<IIR_Declaration> *list, IIR *obj), which is a

function used to find the position of obj in list. If obj is found in list, then its position

is returned. Otherwise, "-1" is returned. This function will call the above

_is_identical_with(IIR*) function to test if obj has the same name of any node in

list.

• void _clean_sig_list_fot_identical_elements(dl_list<IIR_Declaration> *list),

which is a function used to get rid of redundant array entry element from list. In

SAVANT, if an array entry appears several times in a VHDL process, there will be

multiple IIRJndexedName objects created for that array entry. Thus after the input or

output signal list of the VHDL process is created, it is possible the same array entry

could appear more than once in the two lists. Because each array entry object has a

different memory address, the only way to tell two array elements are the same is to

examine their names. This is the reason to define the _is_identical_with() function.

It is also possible that the whole array is in the signal list, and one of its entry elements

appears in the list. If this happens, this array entry also must be deleted from the signal

list. The _get_position_in_list() function is used to find out the position of the

whole array signal(the prefix of the array entry). If the return value is "-1", the whole

array is not in the list. Otherwise, the whole array has already been put into the list and

the array entry is deleted.

For coding details of the IIRPvhdl class, please refer to [34, HRPvhdl.ee].

Signal Assignment Statement

The predefined IIR_SignalAssignmentStatement class updates the projected

waveform output of one or more signal drivers. It is a child class of the

IIR_SequentialStatement class. The signal assignment may appear anywhere a sequential

statement may appear. The IIRPvhdl_SignalAssignmentStatement class is defined to

overload the _publish_cc() function of IIRScram_SignalAssignmentStatement class.

Predefined Public Method and Data

41

The IIR_SignalAssignmentStatement has a predefined target method IIR*

get_target(). Target method refers to the target of a signal assignment statement. After

getting the IIR pointer of the target, its _publish_cc() method can be called to publish its

name. The target is an output signal. Since the system publishing prefix is "in_", and all

output signals should have prefix "out_", we need to change the system publishing prefix

temporarily to "out_". After the _publish_cc() method

of the target is called, the system publishing prefix should be changed back to "in_".

Another useful predefined public method is IIR_DelayMechanism

get_delay_mechanism(). A signal assignment statement either uses transport or inertial

delay. The return value of this method should be either "IIR_TRANSPORT_DELAY" or

"IIR_INERTIAL_DELAY".

The IIR_SignalAssignmentStatement has a predefined data element

IIR_Waveformlist waveform. It is the list of signal drivers (waveforms) associated with

this signal assignment. We need to go through this list to publish all waveforms.

Default Publishing Format

The default format of signal assignment is to publish an C++ assignment

statement and a assignDelayO function for each individual waveform. Figure 4.1 is an

example of the publishing format.

VHDL Source Code

a <= inertial b after 1 ns, c after 2 ns;

PUBLISHED C++ CODE

out_a = in_b;
assignDelay(&out_a, 1 NS, INERTIAL);
out_a = in_c;

42

assignDelay(&out_a, 2 NS, INERTIAL);

FIGURE 4.1 DEFAULT PUBLISHING FORMAT OF SIGNAL ASSIGNMENT

To publish the assigned value, the _publish_ccQ method of the

IIR_WaveformElement class should be called.

Both "INERTIAL" and "TRANSPORT" are defined in SavantGlobal.h file. They

are published according to the result of the get_delay_mechanism() function. If the

return value is "IIRJNERTIALJDELAY", then "INERTIAL" is published. If the return

value is "IIR_TRANSPORT_DELAY", then 'TRANSPORT" is published.

The delay of the signal assignment can be retrieved by calling the predefined IIR*

get_timeO method of the IIR_WaveformElement class. The returned IIR pointer will

point to the assignment time expression. If the pointer is not NULL, then its

_publish_cc() method is called to publish the time expression. If the pointer is NULL,

this means "delta" delay and the SavantGlobal.h defined "DELTA" string should be

published.

The IIRPvhdl_WaveformElement Class

The IIR_WaveformElement has a predefined public method "IIR* get_value()".

It returns an IIR pointer pointing to the value expression being assigned to the output

signal. The IIRPvhdl_WaveformElement class is defined to overload the _publish_cc() of

the IIRScram_WaveformElement class. There is simply one line in the new _publish_cc()

function: get_value()->_publish_cc().

Whole Array Assignment

It is valid in VHDL to assign the value of one array to another. For

43

example, if both a and b are two dimensional array objects, "a <= b" means to do one to

one copy of the array element from b to a. In our project, array is not registered to the

simulation kernel as single object but as a group of discrete elements, thus whole array

assignment should be handled differently. Details on how to handle VHDL arrays will be

discussed in later sections.

Assignment of Record Field

In contrast to array, record is registered to the simulation kernel as a single object.

Thus when a field of the record object is assigned a new value, the delay should be

assigned to the whole record object. To get the name of the record object, the predefined

_get_prefix() method of IIR_SelectedName class is called. This method will return the

pointer of the record object. To publish its name,

we can simply call its _publish_cc() function.

Variable Assignment Statement

The IIRJVariableAssignmentStatement class updates the value of a variable with

the value specified in an expression. It is a child class of the IIR_SequentialStatement class.

Variable assignment statement may appear anywhere a sequential statement may appear.

The IIR_VariableAssignmentStatement also has a predefined public target

method, the "IIR* get_target()". It will return an IIR pointer to the target of the

assignment. It defines another public method

"IIR* get_expression()" to get the value of the assignment. To publish the assignment

equation, the get_targetQ->_publish_ccO is called first, then an "=" is written out to

"Classes.h", then get_expression()->_publish_ccO is called.

Variable Name

44

When declaring variables, no prefix is added to their names. Now that the system-

publishing prefix string is set, variable names will have the system prefix as well. This is not

desired in this project. To overcome this problem, a IIRPvhdl_VariableDeclaration class is

added. This class overloads the _publish_cc() of IIRScramJVariableDeclaration

class. Actually the new function is almost the same as the old one, it only comments out

the line IIRScram::_publish_cc_prefix_stringO, which publishes the system-publishing

prefix.

Expressions

In signal assignment and variable assignment statements, expressions are most

commonly used as the new value to be assigned. As mentioned above, the get_yalue()

method of the IIR_WaveformElement class and the get_expression() of the

IIR_VarkbleAssignmentStatement class will return an IIR pointer to the expression. To

publish the expression, the _publish_cc() method of the IIR pointer is called. Most of the

time, the IIR pointer returned will point to an IIR_DyadicOperator node or an

IIR_MonadicOperator node.

Dyadic operator is an operator with two operands, like "add". Monadic operator

is operator with only one operand, like "not".

The Dyadic Operator Classes

The predefined IIR_DyadicOperator classes include logical, relational, shift,

adding, multiplying and miscellaneous operators. Derivatives of this class represent both

language predefined dyadic operators and subprograms defining overloading of these

operators.

The parent class of IIR_DyadicOperator is IIR_Expression, which has lots of

predefined child classes, such as the IIR_NandOperator, the IIRJEqulityOperator class,

45

etc. Actually all operator classes with two operands are its child classes.

The IIR_DyadicOperator class has two useful predefined methods, the "IIR*

get_left_operandO" and the "IIR* get_right_operand()"- The first method returns an

IIR pointer to the left operand, the second method returns an IIR pointer to the right

operand. By calling the _publish_ccQ method, the two operands can be published easily.

It is possible that either of the IIR pointers points to an IR_DyadicOperator node itself.

This is the situation where the expression contains more than one dyadic operators. The

expression tree is thus more than one level. The whole expression can be published

recursively.

The predefined "get_kindO" method can be used to determine the name of the

operator. For example, if the return value is "IIR_EQULITY_OPERATOR", it means the

current operator is an "equality" operator and we can publish the corresponding "=="

operator in C++. Figure 4.2 is a code segment of the _publish_cc() method of the

IIRPvhdl_DyadicOperator class.

switch(get_kind())
case IIR_NAND_OPERATOR :

_cc_out << "-(";
get_left_operand()->_publish_cc();
_cc_out <<"&";
get_right_operand()->_publish_cc();
_cc_out << ")";
break;

default: // for and/or/not, both logical and bitwise
_cc_out << "(";
get_left_operand()->_publish_cc();
_cc_out << " ";
_publish_cc_operator_name();
_cc_out << " ";
get_right_operand()->_publish_cc();
_cc_out << ")";

Figure 4.2 Example on How to Publish Expressions

46

Several operators, such as "and", "or", and "not", can be either logical operators

or bitwise operators. To publish the correct operator, their type should be determined. To

solve this problem, the IIRScram_DyadicOperator class defines a virtual function 'Void

_publish_cc_operator_nameO"- All its child classes must override this class to print out

the correct operator. For example, Figure 4.3 shows this function of the

IIRPvhdl_AndOperator class.

void
IIRPvhdl_AndOperator: :_p\iblish_cc_operator_name () {

if(get_subtype()->_is_bit_type()){
_cc_out << "&";

} else {
_cc_out << "&&";

}
}

FIGURE 4.3 THE _PUBUSH_CC_OPERATOR_NAME() METHOD OF IIRPVHDL_ANDOPERATOR

If the return value of get_subtvpeO->_is_bit_type() is true, it means the

operation is a bitwise operation and the bitwise operator should be published. Otherwise,

the logic operator should be published. The way to publish these operations is shown in

the default section of Figure 4.2. Please refer to [34, IIRPvhdl_DyadicOperator.cc] for

coding detail.

The Monadic Operator Classes

The predefined IIR_Monadic operators include identity, negation, absolute value

and not. Derivatives of this class represent both language predefined monadic operators

and subprograms defining overloading of these operators.

The IIR_MonadicOperator class has a predefined function "IIR* get_operand"

which returns an IIR pointer of the operand. The operand can be either a dyadic operator

47

or a monadic operator itself. To publish the operand, its "_publish_cc()" method is

called. The IIRScram_MonadicOperator class also defined a virtual function

"void _publish_cc_operator_name()"- This function also must be ovedoaded by its

child class. Up to now, only the NOT monadic operator has been implemented. For

coding details, please refer to [34, IIRPvhdl_MonadicOperator.cc].

The If Statement

Like C++, VHDL has a "if..then..else" statement which evaluates a condition

then executes different branches accordingly. The goal here is to translate the VHDL If

statement into the C++ If statement.

If statement usually contains a test condition, a "then" branch, a cluster of "elseif'

branches, and a final "else" branch. AIRE defines the IIR_IfStatement class and the

IIR_Elsif class to implement the If statement. Correspondingly, an IIRPvhdl_Ifstatement

class and an IIRPvhdl_Elsif class have been implemented to perform the translation work.

The IIRPVHDLJFSTATEMENT Class

The AIRE predefined IIR_IStatement class provides for the optional, selective

execution of one or more sequential statement lists. It is a child class of

IIR_SequentialStatement and may appear anywhere sequential statements are allowed.

The IIR_IfStatement uses a chain of IIR_Elsif tuples to contain the elsif parts of

the If statement. The IIR_Elsif tuple combines a test condition and a sequence of

statements, which are to be executed if the test condition is true. If the recursion does not

encounter a "true", the final else sequence of statements (the else_sequence in

IIR_IfStatement) is reached.

The IIR_IStatement has the following predefined public data and method:

48

• IIR* get_conditionQ, which returns an IIR pointer to the boolean "condition" which

is evaluated in order to determine which sequential statements are to be executed.

• IIR_SequenttalStatementIist then_sequence is the "then" statement branch,

which is to be executed when the condition is true.

• IIR_Elsif* get_elsifO, which returns an IIR_Elsif pointer pointing to the "elsif'

sequences.

• IIR_SequentialStatementList else_sequence, which is the "else" statement branch.

To publish the If statement, we only need to call the _publish_cc() method of

the above public data or pointers returned by the public methods. Coding is rather

straightforward. For details, please refer to [34, IIRPvhdl_IfStatement.cc].

The IIRPVHDL_ELSIF Class

The predefined IIR_Elsif class represents one step within a recursive if-then-else

statement. It is the "elsif branch, which may contain more than one "elsif statement

sequences.

The IIR_Elsif class has the following predefined public data and methods:

• IIR* get_conditionO, which returns an IIR pointer pointing to the boolean

expression to be evaluated.

• IIR_SequentialStatementList then_sequence_of_statements, which is the

sequence of statement to be executed when the condition is true.

• IIR_Elsif* get_else_clauseO, which returns the next "elsif sequence if it exists.

This makes the "elsif sequence a linked list.

Similarly, the _publish_cc() method of the above data and returned pointers are

called to publish the "elsif statement. Details of coding please refer to [34,

49

IIRPvhdl_Elsif.cc].

The Case Statement

VHDL has a "Case" statement in which the behavior depends on the value of a

single expression. Different evaluations of the expression will lead to the execution of

different sequential statement sequences. This is similar to the "Switch" statement in C++.

But the VHDL "Case" can not be converted to the C++ "Switch" statement directly. The

reason is that in C++, the evaluation values of "Switch" can not be expressions, they can

only be constants. Thus the VHDL "Case" statement is also translated into C++

"if..then..else" statement.

The HRPVHDL.CASESTATEMENT Class

The AIRE predefined IIR_CaseStatement provides for execution of at most one

sequential statement list from a set of alternatives. It is a child class of the

IIR_SequentialStatement class and may appear anywhere sequential statements are allowed.

The IIR_CaseStatement class has a predefined "IIR* get_expression()" public

method. The returned IIR pointer of this method points to an expression whose value is

evaluated in order to select one choice and the implied sequence of statements to execute.

The IIR_CaseStatement class has a predefined public data named

case_statement_alternatives. It is of type IIR_CaseStatementAlternativeList. It is a list of

the alternatives of the "Case" statement.

The _publish_cc() function of IIRPvhdl_CaseStatement basically does 4 things:

• Save the returned IIR pointer of get_expressionQ to _current_publish_node. The

_current_publish_node is an IIR* type global variable defined in IIRScram.hh. The

50

reason to save the pointer to this variable is to be able to publish the expression later

when out of the IIR_CaseStatement node.

• Publish "if(false) {}" as the "then" branch of the C++ If statement, so that all "Case"

alternatives can be published as "elsif' branches.

• Call the _publish_cc() method of the case_statement_alternatives to publish the

"Case" alternatives.

• Restore the old _current_publish_node value.

For programming details please refer to [34, IIRPvhdl_CaseStatement.cc].

The HRPVHDL_CaseStatementAltetnativeByExpression Class

The predefined IIR_CaseStatementAlternativeByExpression represents a case

statement alternative in which the choice is a simple expression, discrete range (range type),

or element simple name (the choice). It is a child class of the predefined

IIR_CaseStatementAlternative class.

The IIR_CaseStatementAlternativeByExpression has a predefined public method

"IIR* get_choiceO" which returns an IIR pointer pointing to the choice expression of

this alternative.

The IIR_CaseStatementAlternative class has a predefined public data

"IIR_SequentialStatementIist sequence_of_statements" which is inherited by the

IIR_CaseStatementAlternativeByExpression class. This data element is basically a list of

sequential statements which are to be executed when the "Case" expression is evaluated to

match the choice expression of this alternative.

The _publish_cc() method of IIRPvhdl_CaseStatementAlternativeByExpression

publishes the "Case" alternative as a "elsif' branch of the If statement. It does the

following things:

51

Publish the "else if string.

Call _current_pub!ish_node->_publish_ccO to publish the expression. In the

_publish_cc() method of IIRPvhdl_CaseStatement, the IIR pointer to the expression

is stored in _current_publish_node.

Publish the "==" string.

Call get_choice()->_publish_ccO to publish the choice expression.

Publish the ")".

Call sequence_of_statements._publish_ccO to publish the sequential statement of

this "Case" alternative.

Please refer to [34, IIRPvhdl_CaseStatementAltemativeByExpression.cc] for coding

details.

The IIRPVHDL_CaseStatementAlternativeByOthers Class

The predefined IIR_CaseStatementAlternativeByOthers represents a case

statement alternative in which the choice implicidy denotes other elements of the case's

composite subtype not previously explicit within an IIR_CaseStatementAlternativeList. It

is similar to the "else" branch of the If statement or the "default" branch of the Switch

statement

in C++.

The _publish_ccO method of IIRPvhdl_CaseStatementAlternativeByOthers simply calls

_publish_cc() of sequence_of_statements to publish the code. Since

IIR_CaseStatementAlternativeByOthers is a child class of IIR_CaseStatementAlternative

class, it inherits this data element too. For coding details, please refer to [34,

IIRPvhdl_CaseS tatementAlternativeByOthers.ee].

52

The For Loop Statement

VHDL has a For loop statement which resembles the C++ For loop statement.

The predefined IIR_ForLoopStatement executes a sequences of statements zero or more

times, advancing the value of an iterator constant once after each execution of the loop

body. The IIR_ForLoopStatement class is the child class of IIR_SequentialStatement and

may appear anywhere a sequential statement is allowed.

The IIR_ForLoopStatement has the following predefined public data and method:

• IIR_ConstantDeclaration* get_iteration_scheme(), which returns a pointer

pointing to the iteration scheme. The iteration scheme, a constant declaration, is the

For loop iterator. The declaration's subtype determines the iteration direction and

range.

• IIR_SequentialStatementList sequence_of_statements, which is the list of

sequential statements within the For loop.

The IIRPvhdl_ForLoopStatement class is defined to overload the _publish_cc()

method of the IIRScram_ForLoopStatement class. To publish the For loop, the following

functions are used:

• get_iteration_schemeO->_is_ascending_range(), which is called to determine

whether the iteration scheme is ascending. If this is true, its left bound is its lower

bound. Otherwise, its right bound is its lower bound. The lower bound is assigned to

C++ iteration variable.

• get_iteration_schemeO->_publish_cc_leftO, which is called to publish the left

bound of the iteration scheme.

• get_iteration_scheme()->_publish_cc_rightO, which is called to publish the right

bound of the iteration scheme.

53

The above functions are called to publish the head of the For loop. Inside the For

loop, sequence_of_statements._publish_ccO is called to publish the sequential

statements of the For loop.

In VHDL, the iteration variable is meaningful only within the For loop. Its value can't

be referenced outside the For loop. In SAVANT, an iteration variable is named by its

memory address. As a result, different iteration variables have different names. In the

published C++ class, each iteration variable is declared within the For loop.

For coding details, please refer to [34, IIRPvhdl_ForLoopStatement.cc].

The While Loop Statement

VHDL also has a While Loop statement which is similar to the While Loop

statement in C++. The predefined IIR_WhileLoopStatement executes a sequential

statement list zero or more times. A boolean condition is evaluated before each iteration. If

the condition evaluates true, the enclosed statement sequence is executed. Otherwise, the

statement following the While loop statement is executed. The IIR_WhileLoopStatement

is a child class of IIR_SequentialStatement class and may appear anywhere a sequential

statement is allowed.

The IIR_WhileLoopStatement has the following predefined public data and method:

• IIR* get_while_conditionO, which returns an IIR pointer pointing to the loop

condition. The While condition is evaluated at the beginning of each iteration through

the loop statement's body. When the While condition evaluates False, the loop

execution terminates.

• IIR_SequentialStatementList sequence_of_statements, which is the list of

sequential statements that will be executed when the condition is true.

To publish the While Loop, we simply need to call the _publish_cc()

54

function of the above data and the IIR pointer is returned by the method. Coding is

straightforward. For coding details please refer to [34, IIRPvhdl_WhileLoopStatement.cc].

The Wait Statement

VHDL has a Wait statement, which does not have a corresponding language

construct in C++. A VHDL process (with no sensitivity list) executes from the beginning

of the process to the first occurrence of a Wait statement, then suspends until the

condition specified in the Wait statement is satisfied. If the process only includes a single

Wait statement, the process reactivates when the condition is satisfied and continues to the

"end process" statement, then begins executing again from the beginning. If there are

multiple Wait statements in the process, the process executes only until the next Wait

statement is encountered [1, page 168-169].

Syntax

Wait statement is a sequential statement with the syntax rule shown in Figure 4.4.

wait_statement <=
[label:] wait [on signal_name {,...}]

[until boolean_expression]
[for time_expression]

FIGURE 4.4 SYNTAX OF WAIT STATEMENT

The sensitivity clause, condition clause, and timeout clause specify when the process is

subsequendy to resume execution. They can be combined together to use in the VHDL

process.

Starting with the word on, the sensitivity clause specifies a list of signals to which

the process responds. If the Wait statement contains only a sensitivity list, the process will

55

resume whenever any one of the listed signals has an event. The condition clause starts

with the word until. It specifies a condition that must be true for the process to resume.

The timeout clause starts with the word for. It specifies a maximum interval of simulation

time for which the process should be suspended [1, page 114-116].

The IIR.WAITSTATEMENT Class

The IIR_WaitStatement suspends execution pending a signal event, boolean

condition and/or time out interval. It is a child class of the IIR_SequentialStatement class

and may appear almost anywhere a sequential statement may appear (some restrictions in

subprograms). It has the following predefined public data and methods:

• IIR_SignalNameList sensitivity_list, which is the sensitivity list.

• IIR* get_condition_clauseO, which returns an IIR pointer to the condition clause.

If no condition clause is associated with the Wait statement, the pointer to condition

clause returns NIL.

• IIR* get_timeout_clauseO, which returns an IIR pointer to the timeout clause. A

NIL value for the clause denotes timeout at STD.STANDARD.TIME'HIGH.

The IIRPvhdl_WaitStatement class overloads the _publish_cc() method of the

IIRScram_WaitStatement class. The three Wait clauses all have been implemented.

The EXECUTEPROCESSO Function

Before discussing details on how to implement the three Wait clauses, it is

necessary to go back to the structure of the executeProcess() method of the simulation

object class.

The way the executeProcess() implements the suspension semantics of the Wait

statement is simple. It uses a If statement to test the Wait conditions (a condition

56

expression or event of sensitivity list signals). If the test returns true, then execution of the

function goes to the next statement. Otherwise, the function simply returns.

The semantics of a Wait statement requires that a VHDL process resume from the

last suspended Wait statement, not the beginning of the process. In C++, each time an

executeProcessO function is resumed, it is always resumed from the beginning. Thus it

requires a jump from the beginning of the function to the Wait statement where the

function was last suspended.

To solve this problem, two things have to be done. First, each Wait statement has

to be labeled so that a jump can reach it direcdy. Second, a record has to be kept when the

executeProcessO is suspended. The next time the function is resumed, the record will tell

the function where to jump to. A local static integer "P" is defined to serve this purpose.

Its initial value is "0". Each time a Wait statement is reached, VT" increases by "1". The

first Wait statement is labeled "BLOCK1", the second is labeled "BLOCK2", and so forth.

A switch statement is published at the beginning of each executeProcessO function using

the value of "P" as the branching factor. Thus when a executeProcessO is suspended,

"P" keeps the sequence number of that Wait statement. Since "P" is a static variable, its

value is not lost when the function returns. When the function is resumed next, the switch

statement will jump to the Wait label according to the sequence number kept by "P". This

is how things work.

Another issue is how each Wait statement could know its sequence number in the

process. Wait statement will be published in the IIR_WaitStatement node, not the

IIRJProcessStatement node. Thus each IIR_WaitStatement node should already know its

sequence number in the VHDL process when it is published. This problem is solved by

SAVANT. The IIRScram_WaitStatement class has defined a public data IIR_Iat32

wait_id. This integer is used to keep the Wait sequence number. Remember in the

_publish_ccO method of IIRPvhdl_ProcessStatement, the Wait list is built before any

publishing work. It is during this building of the Wait list that each

57

IIRScram_WaitStatement node is assigned a wait_id. For details please refer to [34,

IIRPvhdl_ProcessStatement.cc].

The Wait on Sensitivity List Clause

The BasicObject dass defines a function bool hasEvent(*) to test if a signal has

an event on it. To implement the sensitivity list semantics, this function is called upon each

signal in the sensitivity list of the Wait sensitivity clause. If all hasEvent() functions return

false, this means no event at all and the executeProcessO function should return.

Otherwise, the function should start executing the following statement. The names of

signals in the sensitivity list can be easily retrieved from the predefined sensitivity_list

data element.

The Wait Until Condition Clause

The Wait condition clause is easy to handle. The get_condition_clause() will

return the IIR pointer to the condition clause. The condition is published as the test

expression in an C++ If statement. If the condition is false, the executeProcessO

function should return. Otherwise, the function should proceed from the next statement.

The Wait for Timeout Clause

As mentioned earlier, each C++ class has defined two signals exclusively to handle

the Wait For clause, the in_wait_for_signal and the out_wait_for_signa! of type

SavantbitType. The first signal is registered as an input signal, the second is registered as

an output signal. These two signals are connected directly when generating the

interconnection information.

The time out clause is actually handled as a signal assignment statement with transport

delay. The delay time equals the timeout value. For example, if the third Wait statement in

58

a VHDL process is "wait for 3 ns", then the published C++ code is shown in Figure 4.5.

P++;
BLOCK3:
out_wait_for_signal = ! in_wait_for_signal;
assignDelay(&out_wait_for_signal,3 NS# TRANSPORT);
if(!hasEvent(&in_wait_for_signal)) return;

FIGURE 4.5 EXAMPLE OF WAIT FOR TIMEOUT CLAUSE

Thus the Wait For timeout clause is basically translated into the Wait On

sensitivity clause.

Combination of Clauses

All the Wait clauses are implemented using the C++ If statement. The

combination of Wait clauses is only a matter of publishing which If statement first. Since

the Wait For clause is transformed into the Wait On sensitivity clause, the problem is

simplified to publishing the combination of sensitivity and condition clauses.

If a Wait statement includes a sensitivity clause as well as a condition clause, the

condition is only tested when an event occurs on any of the signals in the sensitivity clause

[1, page 116]. This means the sensitivity clause has higher priority than the condition

clause. The If condition generated by the sensitivity clause should be tested first. If there is

an event on the sensitivity list, then the If condition generated by the Wait condition clause

should be tested. For coding details, please refer to [34, IIRPvhdl_WaitStatement.cc].

Process with Sensitivity List

SAVANT transforms a process with a sensitivity list into a process with a Wait

statement, which uses the same sensitivity list. This Wait statement is put as the last

statement in the VHDL process. Thus there is no need to spend extra effort on

this issue. To test this, simple type "scram -publish-vhdl test.vhd"

59

to see the VHDL code generated by SAVANT (test.vhd is the testing VHDL

file containing a process with sensitivity list statement).

Appendix E shows the code of the IIRPvhdl_WaitStatement.hh and appendix F shows the

IIRPvhdl_WaitStatement.cc file.

Constant Declaration

In VHDL, constants can be declared anywhere declarations can appear. Due to

limited time, the declarations of constants are restricted only to package declaration in this

project. It is also possible to implement the declaration of constant in other declaration

bodies.

Since C++ also allows constant declarations, the translation of VHDL constant

declaration into C++ constant declaration is straightforward. After being declared,

constants can be used just like signals and variables.

VHDL Constant Declaration <=
constant identifier{,...}: subtype_indication
[:=expression];

C++ Constant Declaration <=
const type identifier = expression;

FIGURE 4.6 CONSTANT DECLARATION SYNTAX

The syntax of VHDL constant declaration and the C++ constant declaration

syntax is shown in Figure 4.6.

The IIR_PACKAGEDECLARATION Class

Package declarations are usually at the beginning of VHDL source code, thus

60

packages will be published first by the SAVANT publisher. As a result, declarations in the

package will be published at the beginning part of the "Qasses.h" file. Since all C++

classes are published to "Qasses.h", these constants will become global constants. They

can be accessed by any classes in the Qasses.h file.

The predefined IIR_PackageDeclaration class represents collections of

declarations, which are elaborated at most once, as a collection. This class has a predefined

public data element {IIRJDeclarationList package_declarative_part}. It is a list of

declarations appearing in the package.

When processing the package declaration, the IIRScram_PackageDeclaration calls the

_publish_ccO method to publish the C++ code. The _publish_cc() method in turn calls

the locally defined _publish_cc_header() function. This function then calls the

_publish_cc_package_declarationsO method of the package_declarative_part, which

is of type IIR_DeclarationList. This sequence is correct thus there is no need to change it.

There is no IIRPvhdl layer class, namely IIRPvhdl_PackageDeclaration, added to shadow

the _publish_ccO method of the IIRScram_PackageDeclaration class.

The IIRPVHDL_DECLARATIONLIST Class

The purpose to add the IIRPvhdl_DeclarationList class is simply to overload the

_publish_cc_package_declarationO function declared by the IIRScram_DeclarationList

class. The new function is basically a copy of the old function, only with the changes

shown in Figure 4.7.

case IIR_CONSTANT_DECLARATION:
_cc_out.set_file("Classes.h");
_cc_out « "const ";
decl->_get_subtype()->_publish_cc();
_cc_out « " ";
decl->_publish_cc();
_cc_out « " = ";
decl->get_value()->_publish_cc();
_cc_out « ";\n" « endl;

61

break;

FIGURE 4.7 CODE OF CONSTANT DECLARATION

Coding is quite straightforward. For details, please refer to [34,

HRP vhdl_DeclarationList.cc].

Enumeration Types

Like C++, VHDL also supports enumeration types. Thus the translation from the

VHDL enumeration type declaration to C++ enumeration type is straightforward.

Enumeration types can be declared anywhere, but in this project, only enumeration types

declared in a package are implemented.

When processing a package declaration, the IIRScram_PackageDeclaration calls

the _publish_ccO method to publish the C++ code. The _publish_cc() method in turn

calls the locally defined _publish_cc_header() function. This function then calls the

_publish_cc_package_declarationsO method of the package_declarative_part, which

is of type IIR_DeclarationList. A IIRPvhdl_DeclarationList class has been added to

overload the function. For enumeration declaration types, the "get_kind()" method will

return "IIR_TYPE_DECLARATION". The "_publish_cc_decl()" method is then called

to publish the declarations (for coding details please refer to [34,

IIRPvhdl_DeclarationList.cc].

The void _publish_cc_decl() function is defined at IIRScram.hh as a virtual

function. An IIRPvhdl_TypeDeclaration class is defined to overload this function. There is

only one line in the new function, "get_typeO->_publish_cc_decIO".

The get_type() method is a predefined public method of the

IIR_TypeDeclaration class. It returns an IIR_TypeDefinition pointer to the new type

definition node. In the context of enumeration type declaration, the returning pointer will

62

be an IIR_EnumerationTypeDefinition pointer.

An IIRPvhcHJEnumerationTypeDefinition class is defined to overload the

_publish_cc_decl() method. In the AIRE standard, the predefined

IIR_EnumerationTypeDefinition represents its value domain by a set of enumeration

literals. It has a predefined public data IIR_EnumerationIiteralList

enumeration_literals, which is the list of enumeration literals associated with the type

definition.

The _publish_cc_declO function of IIRPvhdl_EnumerationTypeDefinition does the

following things:

• Set the output file name to "Classes.h".

• Call _publish_cc_tvpe_name() to publish the name of the new type.

• Use a for loop to go through enumerationjiterals and publish each enumeration

literal in the list.

After an enumeration type has been declared, there is no difference in using a

variable of this enumeration type and variables of other types. Thus declaration is the only

thing needed to be considered for enumeration types. For programming details, please

refer to [34, IIRPvhdl_TypeDeclaration.cc, IIRPvhdl_EnumerationTypeDefinition.cc].

Array Types

VHDL supports array types. Unlike C++, array types have to be defined first. This

new type can then be used to declare array objects. This section discusses issues on how to

publish VHDL arrays into C++ arrays.

63

The IIRPVHDLJNDEXEDNAME Class

The predefined IIRJndexedName denotes a single element of an array. It has a

predefined public method IIR* get_suffix() which returns an IIR pointer to the name's

suffix (an expression which evaluates to a single integer).

The IIRPvhdlJndexedName Class is defined to handle array entry related

problems. This class has overloaded or defined the following functions:

• void _get_signal_source_info(set<IIR_Declaration> *siginfo) This function is

defined at IIRScram.hh as a virtual function. The purpose of this function is to put the

current array entry into the output signal list siginfo. In SAVANT, the whole array will

be put into the output signal list, not the single element. Thus this function is

overloaded to put the array entry to the list.

• void _get_list_of_input_signals(set<IIR_Declaration>* list) This function is also

defined in IIRScram.hh as a virtual function. Its purpose is to put the current array

entry into the input signal list denoted by list. In SAVANT, the whole array is put into

the input signal list, not the single entry. Thus this function is overloaded to put the

array entry into the list.

• void _publish_cc() This function is overloaded to publish the whole name of the

array entry. It will use the two variables _proc_in_sig_list and _proc_out_sig_list

defined by IIRPvhdl.hh to determine whether the current array entry is an output

signal or an input signal, then put prefix "in_" or "out_" accordingly.

• void _publish_cc_array_entry_locationO This function is defined to publish the

suffix of the array entry using the underscore format. For example, array entry (1,2)

will be published as _1_2. This function is to handle the naming of an array entry

where the whole array is not in either the input or the output signal list. Thus this entry

is declared as a separate signal and its name will use the underscore format. This

function uses the get_suffix() to get the IIR pointer to the suffix expression.

64

Please refer to [34, IIRPvhdl_IndexedName.cc] for programming details.

Template Array Classes

VHDL supports direct array operations. That is, array objects can be assigned,

added, or multiplied as simple type objects. The result is that each array entry element will

perform the operation. This feature is not supported in C++ directly. To implement this

feature, VHDL array types have to be declared as C++ classes. These array classes must

use operator overloading to implement the whole array operations.

Template array classes have been developed to solve this problem. Right now,

template array classes have been developed for one, two, and three dimensional array

types. The reason to use templates is that all array classes are almost identical except for the

data types of their entries. Thus there is no need to generate a separate class for each array

type. Figure 4.8 shows how the assignment operator is overloaded by the one dimensional

template array class. For now, the following operators have been overloaded: +,-

,*,/,==,!=,\&> I AA
J
=

- The "=(int)" operation is overloaded for each array class to ensure

the initialization of the class object using a single integer value. The code of template array

classes implemented in file "PvhdlArray.h". Appendix G shows the portion of one

dimensional array template class.

// overload =
PvhdllDArray<Dtype>& operator=(PvhdllDArray<Dtype> &obj)
{

for(int i=0; i<size; i++)
array[i] = obj.array[i];
return *this;

}

FIGURE 4.8 OVERLOADING ASSIGNMENT OPERATOR FOR ONE DIMENSIONAL
ARRAY CLASS

65

Right now, SAVANT only supports the direct array assignment operation. Other

array operations are not supported. There is a compiling error if the source VHDL code

contains other array operations. These array operations are overloaded for future versions

of SAVANT, which is supposed to support them.

The IIRPVHDL_ArraySubtypeDefinition Class

The IIRPvhdl_ArraySubtypeDefintion class is added to handle the declaration of

array types. Since array classes are implemented as template classes, it is necessary to know

two things about the VHDL array type: its dimension and the data type of its entry. The

void _publish_cc0 function is overloaded to publish array types using the array template

classes described above.

To get the dimension of the array type, the IIR_Int32 _get_num_indexes()

function is called. This function is defined by the IIRScram_ArrayTypeDefinition class,

which is the parent class of IIRScram_ArraySubtypeDefinition class. If the return value is

"1", then the 'TvhdllDarray" template class is used; if the return value is "2", the

'Tvhdl2Darray" template class is used; if the return value is "3", the 'TvhdBDarray"

template class is used. No higher dimension array types are supported right now.

To get the data type of the array entry, a for loop is used to call the

_get_element_subtvpeO function as many times as the dimension. The final subtype will

be the type of the entry element. By calling its _publish_cc_type_name() function, the

array entry data type can be published. To see how this is done, please refer to [34,

IIRPvhdl_ArraySubtypeDefinition.cc].

Record Types

VHDL also supports record types. VHDL record types are translated into C++

record types in a straightforward way.

66

The IIRPVHDL_RecordTypeDefinition Class

The predefined IIR_RecordTypeDefinition class represents a record type having

zero or more element declarations. It has a predefined public data element

element_declarations of type "IIR_ElementDeclarationList". This is the list of all die

fields of this record.

The IIRPvhdl_RecordTypeDefinition class is defined to overload the

_publish_cc_declO function. In this function, element_declarations is used several

times. By going through this list, each of the record elements is published by its type and

name. Also, some operators are overloaded for the record, such as addition, etc. The

reason is to support arrays of record. Since the template array classes have overloaded

some operators, each defined record type has to overload the same operators. For coding

details, please refer to [34, IIRPvhdl_RecordTypeDefinition.cc].

4.3 Future Work

To handle more complicated VHDL descriptions, more VHDL constructs need to be

supported in the future, such as functions and procedures, bus resolution, generic constant,

etc. On the other hand, as time goes by, SAVANT will be improved and it can be used to

serve this project better.

67

5. ELABORATION AND

INTERCONNECTION OBJECTS

5.1 INTRODUCTION

In this chapter we will present the representation scheme that we've used to encode the

interconnection of the networked objects of any VHDL design, or any system in general.

In the first section, we spend some time over this subject and the need for extracting this

encoded form of interconnection, and also some conventions that we use. In section two,

we present the algorithm that we developed for this purpose along with a simple example

to clarify the algorithm.

Any system subject to simulation, consists of objects that are interconnected. If MPI

(Message Passing Interface) is used to model the system, then objects communicate with

each other by sending and receiving messages. Communication, or message passing, is

done through the network in which objects are interconnected. In other words, each object

could send/receive messages to/from objects that it is direcdy connected to in that

network configuration. Hence, each object should have information about the source of

the incoming messages, and also the destination of the out going messages. This implies

that we need a representation scheme to present objects in some encoded fashion, so that

each object could be uniquely identified in the network. One way would be to assign

unique object IDs to each object, then each object will be uniquely identified in that

network. Doing this, we have solved just part of the problem. Usually objects are

connected to several other objects via separate links/channels/ports and behavior of the

object may depend on the events it receives from certain channels. For example in logic

gate level simulation, an AND gate may be modeled as an object with two input ports

68

which receive events) and one output port (which sends events). Similarly, any object may

be modeled as a multiple port object, some of them to receive messages and some of them

to send messages. We call the former input port and the latter output port This shows

that object IDs on their own are not complete for a representation scheme, since they do

not give any information about the ports of the object, where other objects might be

associated with. One solution would be, again to assign port IDs for each input and output

ports and also tag them with input label or output label (to differentiate whether it is an

input or output port). To examine this representation scheme, lets apply it to a very simple

network as follows. In the Figure 5.1, the interconnection of objects is presented using a

directed graph and in the Figure 5.2, we have used the proposed representation scheme to

encode the network.

Object name: A
Object ID: 0
Number of input
ports: 1

Number of output
ports: 1

Output port 0 is
connected to :
Input port 0 of object
ID1 (B)

B ► c
^

Figure 5.1 Interconnection Objects

Object name: B
Object ID: 1
Number of input
ports: 2

Number of output
ports :1

Output port 0 is
connected to :
Input port 0 of object
ID2(Q

Object name: C
Object ID: 2
Number of input
ports: 1

Number of output
ports :2

Output port 0 is
connected to :
Input port 0 of object
ID 0 (A)

Output port 1 is
connected to :
Input port 1 of object
ID 1(B)

Figure 5.2 The Encoding of the Network

69

For this network, the proposed representation scheme covers the whole

interconnection information that might be necessary in order to handle communication.

Note that we do not need any convention about how we assign object IDs to the objects

of the network. As long as we assign unique IDs in any arbitrary order to the objects, that

works fine and the same statement is true about the port IDs. This is the basic

representation that we use as part of our representation scheme for the VHDL systems.

5.2 OBJECTS IN VHDL

In this section we will focus on the systems that are modeled by VHDL. We develop our

basic representation scheme that we started in section 5.1. However, before getting into all

the details, we briefly talk about the tools that we used to extract interconnection

information from a VHDL design. In order to visualize and facilitate understanding of our

representation scheme and also our algorithm, we will set some conventions on showing

objects in the system.

VHDL and SAVANT

VHDL is a language to model hardware, or in general any concurrent networked system

and is used widely to model and simulate different hardware for design and production

purposes. Our main goal for this project as stated earlier, is to establish a front-end

interface between VHDL designs and our simulation kernel. Front-end interface consists

of two main parts:

Functional modeling of the VHDL objects into C++ classes. In this part of the front-end

interface, VHDL objects are translated into C++, so that later we can plug them into our

simulation kernel. Extracting the interconnection information to handle the

communication of those objects is also necessary.

70

The focus of this section is on the second part. However for both cases, we need a tool to

facilitate this process to apply on VHDL source code. We have chosen SAVANT as a tool

for this purpose.

The main section of any VHDL design is defined in its architecture statement part, where

all the signal assignments and component instantiation are specified. SAVANT

automatically converts each signal assignment into a process statement containing that

signal assignment and a wait statement on that signal. Any other VHDL architecture

statement construction could be either a signal assignment, process statement, component

instantiation or generate for statement, which in turn is used either as component

instantiation or signal assignment generator. Based on the statement we made a few lines

before, each signal assignment is converted to a process statement, and each component

instantiation recursively has an architecture statement part, which again may include

another layer of component instantiation, signal assignment, etc. Therefore we will see

that the bottom line objects of any VHDL design are just processes. In other words

processes are the basic objects which can not be further split up into more basic objects.

We use this concept of object during the whole section. Now, lets spend some time on our

convention of displaying objects. Lets start with a very simple VHDL code.

 'M
ENTITY NOT_GATE is

PORT(I0 : IN BIT; NO : OUT BIT);
END NOT;

ARCHITECTURE behavioral of NOT.GATE is
BEGIN
pl:PROCESS(I0)
BEGIN

NO <= NOT 10;
END PROCESS;

END behavioral;

This VHDL code models a not gate. If you notice the input port and output port

characteristics are specified in the PORTQ section of the design, which means this module

communicates with other modules through these ports. On the right, we used a figure to

71

show the data functional model of this design. Each VHDL design is displayed by a box

labeled with the entity name. We also display the input and output ports. If it contains

multiple basic objects (several concurrent signal assignment or component instantiation),

we also show them. The simple blank box is just used for the basic objects (processes). In

the similar way, we can display an and gate, which only contains one process statement:

ENTITY AND_GATE is
PORT(I0, II: IN BIT; AO : OUT BIT);

END AND_GATE;

ARCHITECTURE behavioral of AND_GATE is
BEGIN
pl:PROCESS(I0,Il)
BEGIN
A0<=I0ANDI1;

END PROCESS;
END behavioral;

Now assume the following code where this not gate is instantiated in another VHDL

design (buffer):

ENTITY BUFFER_GATE is
PORT(I0 : IN BIT; BO : OUT BIT);

END BUFFER_GATE;

ARCHITECTURE structural of BUFFER_GATE is
COMPONENT NOT_GATE
PORT(I0 : IN BIT; NO : OUT BIT);

END COMPONENT;

FOR notO, notl: NOT_GATE USE ENTITY WORK.NOT_GATE(behavioraI)
PORT MAP (10, NO);

SIGNAL inter: BIT='0';

BEGIN

notO: NOT_GATE PORT MAP(I0=>IN0, N0=>inter);
notl: NOT_GATE PORT MAP(I0=>inter, N0=>B0);

END structural;

72

lEünaaiis.®/ SÜ@

ntf ofloM
» R n Inter n n ©@

Since this buffer uses two instances of the not gate, it is not a basic object and therefore we

also display the components that it contains. If you notice we have also included the

intermediate signal to show how these two components are connected. The buffer might

be instantiated in other VHDL designs, as in the Delayed_AND:

ENTITY Delayed_AND is
PORT(X0, XI: IN BIT; YO : OUT BIT);

END DeIayed_AND;

ARCHITECTURE structural of DeIayed_AND is

COMPONENT AND_GATE
PORT(I0, II : IN BIT; AO : OUT BIT);

END COMPONENT;

COMPONENT BUFFER_GATE
PORT(IN0 : IN BIT; BO : OUT BIT);

END COMPONENT;

FOR andO: AND_GATE USE ENTITY WORK.AND_GATE(behavioral)
PORT MAP (10,11,A0);

FOR bufO, bufl: BUF_GATE USE ENTITY WORK.BUFFER_GATE(behavioraI)
PORT MAP (INO, BO);

SIGNAL interO, interl: BIT:='0';

BEGIN

bufO: BUFFER_GATE PORT MAP(IN0=>X0, B0=>inter0);
bufl: BUFFER_GATE PORT MAP(IN0=>X1, B0=>interl);
andO: AND_GATE PORT MAP(IO=>interO, Il=>interl, A0=>Y0);

END structural;

73

Top most design unit

Level one of components instantiation

Level two of components instantiation

Intermediate signal

Figure 5.3. Delayed And Architecture

74

If you notice, this notation captures the way all the basic objects are connected, without

concerning their functional behavior, and this is what we are exactly looking for, to extract

the interconnection information. The reason we introduce this notation is to give a better

understanding of the algorithm we have used. In addition to this notation, we also use a

tree graph to show the general interconnection of the objects as follows:

This figure simply shows that the top most design is Delayed_AND which includes three

components: two instances of buffer and one instance of and. Each buffer component

includes two instances of not. We can go further down the tree, since all of the leaves of

the tree are basic objects. As you notice, it is good to think of any VHDL design as a tree,

where the leaves of the tree are the basic objects. This figure also tells us that in order to

find the interconnection information among the basic objects, we need to traverse the tree

down to the leaves to obtain such information.

5.3 ALGORITHM OVERVIEW

The algorithm can be stated in three steps:

1. Identify the basic objects (processes) and assign globally unique Ids to each.

2. For each basic object, assign locally unique port Ids to each input and output port and

also intermediate signals.

3. For each basic object, find the destinations of its output ports in terms of couples

(global ID, port ID).

75

This is a very general form of the algorithm and we at this point keep it in this way to help

understanding. Later we will explain the detailed algorithm in more depth. Now we show

how the algorithm works and we explain it based on the VHDL design Delayed_AND.

SAVANT keeps the information about any VHDL design, similar to the tree graph that we

pointed out earlier. In SAVANT we can start with the top most design as the root of that

design, and by traversing the tree, we can reach to any node of the tree. If you look at the

Delayed_AND design, signal XO is mapped to INO of bufO, and inside the buffer VHDL

code, INO is mapped to the 10 of notO. We can simply write down this mapping

information for all of the signals manually:

XO O INO (of bufO) <* 10 (of notO of bufO)
XI O INO (of bufl) O 10 (of notO of bufl)

inter (of bufO) <S> NO (of notO of bufO) O 10 (of notl
Of bufO)
inter (of bufl) O NO (of notO of bufl) O 10 (of notl
Of bufl)

interO O NO (of notl of bufO) <S> 10 (of andO)
interl O NO (of notl of bufl) <S> II (of andO)

A0 (of andO) O Y0

Unfortunately, SAVANT does not support a data structure that gives you the list of the

signals that are linked to any particular signal. In other words, there is no data structure in

SAVANT, such that you submit a query for a signal, for example X0 and it returns a list of

signals (like INO, 10) that are connected to this signal. This implies that we have to traverse

the tree of the design rooted at the top most design and extract such information. We

need to encode this information, in terms of numbers, so that the simulator can efficiently

use them. To see how this works, lets apply the first two steps of the proposed algorithm

to the Delayed_AND design:

76

Object
name

Object
ID

Number
of
output
ports

Port ID and
port type of
this
Output

Number
of
input
ports

Port ID
of the
first
input

Port ID
of the
second
input

NotO
(of bufO)

0 1 (0,output)
(NO)

1 (0,input)
(10) -

Notl
(of bufO)

1 1 (0,output)
(NO)

1 (0, input)
(10) -

NotO
(of bufl)

2 1 (0,output)
(NO)

1 (0, input)
(10) -

Notl
(of bufl)

3 1 (0,output)
(NO)

1 (0, input)
(10) -

AndO 4 1 (0,output)
(A0)

2 (0, input)
(10)

(1, input)
(ID

So far we have assigned unique object IDs to each object and also we have assigned locally

unique port IDs to each port of the object. Lets now summarize our ID assignment ruling

system:

1. Each basic object is assigned to a globally unique ID and the order of assigning IDs is

arbitrary. For example if there are N basic objects in the system, we assign Ids 0 to N-l

to these N objects. We can assign them in any arbitrary order. In our example, there

are five basic objects and we have assigned them IDs 0 to 4.

2. For each object, we assign locally unique port IDs to each of input and output ports.

For example if a basic object has m inputs and n outputs, we assign IDs 0 to m-1 to

the inputs and IDs 0 to n-l to the outputs. In our example, if we pick andO, it has 2

inputs and one output. Therefore we assign 0 and 1 to the inputs and 0 to the output.

3. In addition to port IDs, we also need labels to show whether this port is input or

output, otherwise we will not be able to distinguish input or output ports, based on the

port IDs (since port IDs for both input and output start from 0).

4. We claim that with this information, each object can be uniquely identified and

moreover, each port of each object is also uniquely identified. For example, object

notO of bufO, can be represented as (objectID:00) or output port of the notl of bufl

can be represented as (objectID:3, portID:0, port_type:output). Or for example the

encoded form (2,0,input), tells us about input port with port ID 0 of basic object 2,

77

which is 10 of notO of bufO.

So far, we have applied the first and second steps of the algorithm. The most difficult part

of the algorithm is the third part which is to obtain a destination list for each output port

of all basic objects. We are interested in extracting information as specified in Figure 5.3 to

find out how inputs and outputs of the basic objects are connected to each other.

Connectivity, is symmetric and transitive, which means "if a is connected to b" then:

• "b is connected to a"

• and if "b is connected to c", then " a is also connected to c"

The transitivity rule, plays a very important role in extracting interconnection information.

For example, consider notO and notl of bufO. There is no explicit information in

SAVANT that tells us buf0:not0:N0 is connected to buf0:notl:I0, but if we extract some

information as specified in Figure 5.3, then we can use transitivity property and conclude

this:

NO (of notO of bufO) O inter (of bufO) O 10 (of notl
Of bufO)
Implies that
NO (of notO of bufO) <» 10 (of notl Of bufO)

This procedure is called Elaboration, in which by applying the transitivity rule in several

steps we obtain new connectivity information. Step 3 of the algorithm is the application of

Figure 5.4. Decomposition Hierarchy

elaboration on the design tree to extract all the interconnection information. Before we

78

get into the details of our elaboration procedure, lets overview our approach. In Figure 5.4,

we displayed the tree representation of our example. As we explained earlier, each leaf of

this tree represents one basic object. As shown in Figure 5.4, each leaf or basic object,

using the transitivity rule, reports to the parent node the connectivity information (which

means that each of the basic object input/output ports are connected to which signal in

the parent node). After the parent node receives all reports, it does the same procedure and

reports the newest elaborated information to its parent node. This process continues till all

the information is collected at the root, which is the top most design.

Lets see how this works for our example. For example, consider notO of bufO. First notO

reports to bufO that I0OIN0 and NO <£> inter. Then after bufO collects the same

information from notl (which is IOOinter and N0OB0), it reports to Delayed_AND that

I0OX0 and BOOinterO.

Delayed_AND, after receiving this information and the same kind of information from

bufl and andO, can then simply combine and elaborate this information and form the final

interconnection information.

• Phase 1
notO reports to bufO :
bufO:notO:IO O bufO:INO
bufO:notO:NO O bufO:inter

notl reports to bufO :
bufO:not1:10 O bufO:inter
buf0:notl:N0 «► buf0:B0

notO reports
bufl:not0:I0

to bufl
O bufl: INO

BUFFER

/\
NOT NOT

BUFFER

NOT NOT

bufl:not0:NO O bufl:inter

notl reports to bufl :
bufl:notl:10 <» bufl:inter
bufl:notl:NO O bufl:BO

• Phase 2
bufO reports to Delayed_AND
buf 0 :not0 : !0ODelayed_AND:X0

AND

79

bufO:notO:NO <=> bufO: inter
bufO:notl:IO O bufO:inter
bufO.-notl :N0 <=t> Delayed_AND: interO

bufl reports to Delayed_AND :
bufl:notO:IO O Delayed_AND:Xl
bufl:notO:NO O bufl:inter
bufl:notl:IO <£> bufl:inter
bufl:notl:NO <£> Delayed_AND: inter 1

andO reports to Delayed_AND :
andO:IO «■ Delayed_AND:inter0
andO:I1 C" Delayed_AND:inter1
andO:AO <» Delayed_AND:YO

Note that we have used for example "bufO:inter", instead of "inter" itself, in order to avoid

confusion between inter of bufO and inter of bufl. This example shows why we need to

assign unique object IDs to the basic objects, input/output ports and intermediate signals,

so that we can uniquely identify them. The main reason for doing this is because we use

"names" for the elaboration process and multiple naming, different entities may occur. For

example in Delayed _AND, two signals following elaboration will have same name as

"inter", however these two signals are absolutely different from each other and it is our

responsibility to somehow differentiate between them. In our approach by assigning IDs

to objects and their input/output ports, we have overcome this problem. To solve the

same problem for the intermediate signals, we simply rename them based on a tag ID. At

each architecture statement part, we use a unique tag to rename the intermediate signal and

when we move to the other architecture statement part of another design unit in the design

unit tree, we can simply increment the tag to obtain a unique tag for that design. For

example , if we initially set tag variable to 0, in bufO, we use this tag to rename "inter" to

"_inter_0" and when we move to bufl, we increment the tag variable to 1, and therefore

we rename "inter" located in bufl to "_inter_l" and we can see how this approach enables

us to differentiate between bufO:inter and bufl:inter.

In the following section we will explain the implementation of our algorithm in more

detail, based on our example.

80

5.4 Implementation Overview

We introduce a simple record as a unit of interconnection information and we call this unit

a NetSegment.

Record NetSegment
{

signal_name;
objectID;
portID;
port_type;

}

Here, the signal_name is the name of the input/output port; objectID is the object ID of

the basic object that has this signal as its input/output port; portID is the port ID of this

signal within that basic object; and port_type is the type of the port, input or output. These

are the minimal number of fields we need for elaboration and our real implementation is a

more complicated class than a record, with more data members and function members.

For each input/output part of each basic object, we create such a NetSegment and fill in

the fields. Then elaboration is done based on these NetSegments. Each node of the design

tree receives a set of NetSegments from its children, elaborates them, and then reports the

elaborated set to its parent, in the same way we explained in section 5.3. Lets do this in our

example and see how it works:

Phase 1

bufOtnotO reports to bufO
Signal_name I0»IN0
ObjectID 0
PortID 0
Port_type Input

bufOinotO reports to bufO
Signal_name N0<»_inter_0
Obj ectID 0

81

PortID 0
Port_type Output

bufO:notl reports to bufO
Signal_name 10<*_inter_0
ObjectID 1
PortID 0
Port_type Input

bu£0:notl reports to bufO
Signal_name N0OB0
ObjectID 1
PortID 0
Port_type Output

bufl:not0 reports to bufl
Signal_name I0OIN0
ObjectID 2
PortID 0
Port_type Input

bufl:noto reports to bufl
Signal_name NOO inter 1
ObjectID 2
PortID 0
Port_type output

bufl:not0 reports to bufl
S i gnal_name I0O_inter_l
ObjectID 3
PortID 0
Port_type input

bufl:notl reports to bufl
Signal_name N0OB0
ObjectID 3
PortID 0
Port_type output

Phase 2

bufO:reports to Delayed_AND
Signal_name I0OX0
ObjectID 0

82

PortID 0
Port_type input

bufO:reports to Delayed_AND
Signal_name N0O_inter_0
ObjectID 0
PortID 0
Port_type Output

bufO:reports to Delayed_AND
Signal_name 10<*_inter
ObjectID 1
PortID 0
Port_type Input

bufO:reports to Delayed_AND
Signal_name N0O_inter0_2
ObjectID 1
PortID 0
Port_type Output

bufl:reports to Delayed_AND
Signal_name I0OX1
ObjectID 2
PortID 0
Port_type Input

bufl:reports to Delayed_AND
Signal_name N0»_inter_l
ObjectID 2
PortID 0
Port_type Output

bufl:reports to Delayed_AND
Signal_name 10<»_inter_l
ObjectID 3
PortID 0
Port_type Input

bufl:reports to Delayed_AND
Signal_name N0<»_interl
ObjectID 3
PortID 0
Port_type Output

andO:reports to Delayed_AND

83

Signal_name I0O_inter0
ObjectID 4
PortID 0
Port_type Input

andO:reports to Delayed_AND
Signal_name HO_interl
ObjectID 4
PortID 1
Port_type Input

andO:reports to Delayed_AND
Signal_name A0OY0
ObjectID 4
PortID 0
Port_type Output

Note that for the signal_name field, instead of an elaborated name, we have used both

signal name and elaborated name to make it easier to understand. In the real

implementation, we simply substitute the current signal name with the elaborated signal

name. In the previous example, the left hand side is the current signal name and the right

hand side is the elaborated signal name (for example IO^INO in the first phase, notO of

bufO simply substitutes 10 with INO in the corresponding NetSegment).

After all the NetSegments are collected at the root, we can simply extract the

interconnection information. For example to find the destination list of any output signal

with the name xxx, we simply search through all NetSegments, and find those

NetSegments labeled with the xxx as the signal name with port_type of input. The search

can be done very efficiently, since we can make a sorted list of the NetSegments based on

the signal names and for example, apply binary search to locate any specific NetSegment.

84

6. BENCHMARKS

We have benchmarked the performance of Time Warp and Synchronous simulators

on the SP2 and Origin 2000. A maximum speed-up of 31 has been achieved using 64

processors. MPI was used on the SP2 and Origin2000 supercomputers. Benchmark circuits

include ISCAS circuits with up to 18,000 objects. We have simulated these circuits with

n=1000 vectors for 2,000,000 units of time. To measure the performance of each

simulator, we have inserted a computational granularity as a parameter. For the s35932xl

and oddeven benchmarks, we have simulated with up to 64 processors, and the remaining

circuits, we have tested with up to 16 processors.

Benchmark
Circuit Name

Number of
Objects

P=l Execution
time

The best execution time
with up to P=64 or P=16

Maximum
Speed-up

Optimal P

s35932x2 17829 594 36 16 32
oddeven 16650 787 25 31 64
c7552* 3620 315 49 6.3 16

multi32* 6950 4373 326 13.4 16
sl5850* 5192 54 8.4 6.3 16

The following figures show the speed-up with s35932X2 with up to 64 processors

using Time Warp protocol. As shown in the Figure 6.1, the Time-Warp simulation speed-

-Ideal Speed-up

-Actual Speed-up

5«
d-
up

^L

*r t

Number of Processor*

Figure 6.1. Speed-up of s35932x2

85

up increases as the number of processors increases, but the rate of speed-up slows down as

the number of processors increases.

We also ran the parallel simulator on the SP2. Figure 6.2 shows the comparison of

execution time on SP2 and Origin 2000 for Time Warp and Synchronous protocols with

ISCAS S953. The Origin is approximately twice as fast as the SP2. As shown in the figure,

the Time Warp is much slower than the synchronous one with 2 processors, but the Time

Warp outperforms the synchronous one as the number of processors increase. As the

number of the processor increases, both simulation schemes suffer because of the

communication overhead.

Execution time on SP and Origin

300

Synchronous at Origin
TimeWarp at Origin
Synchronous at SP2
Timewarp at SP2

Processors

Figure 6.2. Comparison of Time Warp & Synchronous Protocols on SP2 and Origin 2000

Figures 6.3 and 6.4 compare the performance of simulation protocols as the amount of

computation increases per event (called computation granularity). The synchronous one is

better than Time Warp when the number of processors are small and the amount of

computation per event is small. However, as the amount of computation increases, the

performance of Time Warp outperforms the synchronous one. We also found that

rollback rate 10~20% is acceptable for Time Warp.

86

Speedup (Granularity = 100)

- Synchronous i

-TimeWarp

#PEs

Figure 6.3. Speed-up with ISCAS S953 for Grain size 100.

Speedup (Granularity = 1000)

16

14

12
Sp io
ee
du 8
P R

10 20

#PEs

■ Synchronous
-TimeWarp

30

Figure 6.4. Speed-up with ISCAS S953 for Grain size 1000.

87

The performance of Time Warp is closely related to the amount of computation per

event. The following three figures show the performance of Time Warp parallel simulation

for various computation grain sizes (per event). Note that for a small grain size, the

performance gain is minimal, but as the computation grain size increases, we can get a

good speed-up for up to 32 processors. However, the communication cost eventually

dominates as the number of processor increases and the speed-up gain drops as the

number of processors becomes too large.

/ / /
/ f/ V

—»— Qr anu tarty 0
OmutarilylOO

-V- -■ Grmutarily 200
-*-äinuUrty400
-•—Oanutarily 800

! it? V
ly \ i

Figure 6.5. S35932xl Speed-up

s
p
E «
E
D
U
P 3

^L.

-QranO
-Gran8(X

tofPE

Fig. 6.6 Speed-up of SI 5850

88

Speedup

18

16

14

12

Sp
ee 10
du
P

8

6

4

2

0

<AX
\

// - \ \ —«h~ Granularity 0
Granularity 100
Granularity 200

—X Granularity 400
—•—Granularity 800

y//
■""

N. ^ »

X
N

\
>■

NumPEs

Figure 6.7 Odd-even sorter

89

7. CONCLUSIONS

We have implemented a parallel VHDL simulation, especially targeted for behavioral

level simulation. The developed simulator could improve the speed-up up to 31 times

using 64 processors. It has achieved our original goal of improving the speed of VHDL

simulation, a bottleneck of microelectronic design.

The speed of a parallel program depends on various factors such as the efficiency of

algorithms (or schemes), data structures, communication mechanisms, load balancing, and

programming styles. Among those, the communication overhead is one of the most

important factors. Thus, the effect of communication latency hiding and overlapping

computation and communication was not significant. Also the experimental results show

that the computation grain size of each event affects the performance greatly. Particularly,

we found out that many VHDL models we have simulated have very small grain size,

limiting the speed-up gain.

We have also developed an object modeling technique and a front-end interface for

parallel simulation. The front-end interface translates VHDL models into C++ Object

models. Our approach is extensible so that the user can mix and match the models

developed by domain experts and the simulation scheme developed by parallel

programmers. Therefore, our simulation engine can be applied to other areas of discrete

event simulation such as the force-simulation and network simulation. The benefit of the

object oriented nature of our approach is that by its very design, it is simple to "plug in" a

different simulation kernel to get an efficient simulation.

90

APPENDICES

APPENDIX A

IIRPVHDL LAYER CLASS LIST

IIRPvhdl
IIRPvhdl_AdditionOperator
IIRPvhdl_AndOperator
IIRPvhdl_ArchitectureDeclaration
IIRPvhdl_ArraySubtypeDefinition
IIRPvhdl_CaseStatement
IIRPvhdl_CaseStatementAlternative
IIRPvhdl_CaseStatementAlternativeByExpression
IIRPvhdl_CaseStatementAltemativeByOthers
IIRPvhdl_CaseStatementAlternativeList
IIRPvhdl_Choice
IIRPvhdl_Declaration
IIRPvhdl_DeclarationList
IIRPvhdl_DesignFile
IIRPvhdl_DivisionOperator
IIRPvhdl_DyadicOperator
IIRPvhdl_Elsif
IIRPvhdl_EntityDeclaration
IIRPvhdl_EnumerationLiteral
IIRPvhdl_EnumerationTypeDefinition
IIRPvhdl_EqualityOperator
IIRPvhdl_FloatdngPointLiteral
IIRPvhdl_ForLoopStatement
IIRPvhdl_IfStatement
IIRPvhdl_IndexedName
IIRPvhdl_IntegerLiteral
IIRPvhdl_MonadicOperator
IIRPvhdl_MultiplicationOperator
IIRPvhdl_Name
IIRPvhdl_NotOperator
IIRPvhdl_OrOperator
IIRPvhdl_PhysicalLiteral

91

IIRPvhdl_ProcessStatement
IIRPvhdl_RecordTypeDefinition
IIRPvhdl_ScalarTypeDefinition
IIRPvhdI_SelectedName
IIRPvhdl_SequentiaIStatement
IIRPvhdl_SequentialStatementList
IIRPvhdl_SignalAssignmentStatement
IIRPvhdl_SubtxactionOperator
IIRPvhdl_TypeDeclaration
IIRPvhdl_VariableAssignmentStatement
IIRPvhdl_VariableDeclaration
IIRPvhdl_WaitStatement
IIRPvhdl_WaveformElement
IIRPvhdl_WhileLoopStatement
IIRPvhdl_XorOperator

92

APPENDIX B

VHDL SOURCE OF AN AND GATE

entity and.2 is
port(A, B: in bit;

Y: out bit);
end entity and2;

architecture behav of and2 is
begin
gate: process

variable N : bit := '0' ;
begin

Y <= N;
wait on A, B;
N := A and B;

end process gate;
end architecture behav;

93

APPENDIX C

C++ CODE OF THE AND GATE

#ifndef CLASSES_PVHDL_H
#define CLASSES_PVHDL_H

#include "BasicObject.h"
#inelüde "SavantGlobals.h"

typedef int SavantbitType;
typedef int SavantintegerType;
typedef int SavanttimeType;
typedef double SavantrealType;
typedef PvhdllDArray<SavantbitType> Savantbit_vectorType;

class work_Dand2_Dbehav_of_work_Dand2_classO : public
BasicObject
{
public:

// input signals
Savantbi tType in_work_Dand2_0a;
SavantbitType in_work_Dand2_0b;

// output signals
SavantbitType out_work_Dand2_0y;

// signals used to handle wait for statement only
SavantbitType in_wait_for_signal ;
SavantbitType out_wait_for_signal ;

// local vairables - states
SavantbitType gatework_Dand2_Dbehav_0n;

public:

work_Dand2_Dbehav_of_work_Dand2_classO() :
BasicObject()

{

94

// register input signals

registerlnSignal(&in_work_Dand2_0a,sizeof(in_work_Dand2_0a
));

registerlnSignal(&in_work_Dand2_0b,sizeof(in_work_Dand2_0b
));

// register output signals

registerOutSignal(&out_work_Dand2_0y,sizeof(out_work_Dand2
_0y));

// register the wait for signals

registerlnSignal(&in_wait_for_signal,sizeof(in_wait_for_si
gnal));

registerOutSignal(&out_wait_for_signal,sizeof(out_wait_for
_signal));

// register states
registerState(&gatework_Dand2_Dbehav_0n, \

sizeof(gatework_Dand2_Dbehav_0n));

// input signal initial values
in_work_Dand2_0a = X;
in_work_Dand2_0b = X;

// output signal initial values
out_work_Dand2_0y = Y;

// wait for singal initial values
in_wait_for_signal = 0;
out_wait_for_signal = 0;

// state initial values
gatework_Dand2_Dbehav_On = 0;

} // end of constructor

void executeProcess()
{

static int P=0;

// resume to the last wait statement
switch(P) {

95

case 0': goto BLOCK0;
case 1 : goto BLOCK1;
}

BLOCK0:

BLOCK1:

// line 11 "and.tex"
out_work_Dand2_Oy = gatework_Dand2_Dbehav_On;
assignDelay(&out_work_Dand2_Oy,DELTA,TRANSPORT);

// line 12 "and.tex"
P++;

if(lhasEvent(&in_work_Dand2_Oa) &&
lhasEvent(&in_work_Dand2_Ob)) return;

// line 13 "and.tex"
gatework_Dand2_Dbehav_On = (in_work_Dand2_Oa &

in_work_Dand2_Ob);

// reset P value then return, or resume from
beginning

P = 0;
}

};

#endif

96

APPENDIX D

SAVANTGLOBALS.H

#ifndef SAVANT_GLOBALS_HH
#define SAVANT_GLOBALS_HH

#define X -1
#define Y -1

#define DELTA 1
#define NS *100
#define US *100000
#define MS *100000000

#define TRANSPORT 0
#define INERTIAL 1

#inelüde "PvhdlArray.h"

#endif

97

APPENDIX E

IIRPVHDL WAITSTATEMENT.HH

#ifndef IIRPVHDL_WAITSTATEMENT_HH
#define IIRPVHDL_WAITSTATEMENT_HH

#include "IIRScram_WaitStatement.hh"

class IIRPvhdl_WaitStatement : public
IIRScram_WaitStatement {
public:
void _publish_cc();

private:
void _publish_cc_wait_on();

protected:
IIRPvhdl_WaitStatement(){};
~IIRPvhdl_WaitStatement(){};

};
#endif

98

APPENDIX F

IIRPVHDL WAITSTATEMENT.CC

#include "IIRPvhdl_WaitStatement.hh"
#include "IIR_Designator.hh"
#include "IIR_Declaration.hh"
#include "IIR_DesignatorExplicit.hh"

void
IIRPvhdl_WaitStatement::_publish_cc(){
IIR_Designator *desig;
IIR *cond_clause = get_condition_clause();
IIR *time_clause = get_timeout_clause();

_cc_out « "\t" « "P++;\n";
_cc_out « "BLOCK" « wait_id +1 « ":\n";

if(time_clause != NULL){
_cc_out « "\t" << "out_wait_for_signal = !

in_wait_for_signal;\n";
_cc_out « "\t" «

"assignDelay(&out_wait_for_signal," ;
time_clause->_publish_cc();
_cc_out « ",TRANSPORT);\n" « endl;

}

desig = sensitivity_list.first();

if(desig != NULL) _publish_cc_wait_on();
else if(cond_clause != NULL) {
_cc_out « "\t" « "if(!(";
cond_clause->_publish_cc();
_cc_out « ")";
if(time_clause != NULL) {
_cc_out « " && lhasEvent(&in_wait_for_signal)";

}
_cc_out << ") return;\n\n";

} else if(time_clause != NULL) {
_cc_out « "\t" « "if(lhasEvent(&in_wait_for_signal)

99

return;\n\n";
} else {
_cc_out « "\t" « "return;\n\n";

}
}

void
IIRPvhdl_WaitStatement::_publish_cc_wait_on(){

IIR_Designator *desig;
IIR_Declaration *sens_sig;

IIR *cond_clause = get_condition_clause();
IIR *time_clause = get_timeout_clause() ;

desig = sensitivity_list.first();

_cc_out « "\t" « "if(";

while(desig != NULL) {
ASSERT(desig->get_kind()==IIR_DESIGNATOR_EXPLICIT);
sens_sig = (IIR_Declaration *) \

((IIR_DesignatorExplicit *)desig)-
>get_name();

if(sens_sig->_is_array_type()){
_cc_out << "!";
sens_sig->_publish_cc();
_cc_out « ".arrayHasEvent() ";

} else {
_cc_out « "IhasEvent(&";
sens_sig->_publish_cc();
_cc_out « ") ";

}

// move to the next
desig = sensitivity_list.successor(desig);
if(desig !=NULL) {
_cc_out « "&&" « "\n" « "\t" « "

}
} // while

if(time_clause != NULL){
_cc_out « "&&" « "\n" « "\t" « "
_cc_out << "IhasEvent(&in_wait_for_signal)";

}

100

_cc_out « ") return;\n";

if(cond_clause != NULL) {
_cc_out « "\t" « "else if(!(";
cond_clause->_publish_cc();
_cc_out « ")";

if(time_clause != NULL) {
_cc_out « " && IhasEvent(&in_wait_for_signal)";

}

_cc_out << ") return;\n";
}

_cc_out « "\n";
}

101

APPENDIX G

PVHDLARRAY.H

#ifndef PVHDL_ARRAY_H
#define PVHDL_ARRAY_H

#include <stdio.h>
#include <iostream.h>
#include "BasicObject.h"

template <class Dtype> class PvhdllDArray {
public:
int size;
Dtype *array;
BasicObject *owner;

// constructor
PvhdllDArray(){

size = 0;
array = NULL;
owner = NULL;

}

// distructor
-PvhdllDArray(){

if (array != NULL) delete [] array;
}

// allocate array
void allocateArray(int s){

if(s<=0) return;

size = s;
array = new Dtype [s];

}

// set the owner BasicObject of this array object
void setBasicObject(BasicObject *b){

owner = b;

102

}

// register array as input signal
void registerlnSignalArray(){

for(int i=0;i<size;i++){
owner->registerInSignal(&array[i],sizeof(array[i] ;

}
}

// register array as output signals
void registerOutSignalArray(){

for(int i=0;i<size;i++){
owner-

>registerOutSignal(&array[i],sizeof(array[i]));
}

}

// register array as states
void registerStateArray(){

for(int i=0;i<size;i++){
owner->registerState(&array[i],sizeof(array[i]));

}
}

// test if array values have changed
int arrayHasEvent(){

for(int i=0;i<size;i++){
if(owner->hasEvent(&array[i])) return 1;

}

return 0;
}

// copy array value from obj with delays
void assignArray(PvhdllDArray<Dtype> &obj, int delay,

int delay_type){
for(int i=0;i<size;i++){

array[i] = obj.array[i] ;
owner->assignDelay(&array[i],delay,delay_type);

}
}

// overload ==
int operator == (PvhdllDArray<Dtype> &obj) {

for(int i=0;i<size;i++)
if(array[i] != obj.array[i]) return 0;

103

return 1;
}

// overload !=
int operator != (PvhdllDArray<Dtype> &obj) {

if (*this == obj) return 0;
else return 1;

}

// overload == (int)
int operator == (int val) {

for(int i=0;i<size;i++)
if(array[i] != val) return 0;

return 1;
}

// overload != (int)
int operator != (int val) {

if (*this == val) return 0;
else return 1;

}

// overload =
PvhdllDArray<Dtype>& operator=(PvhdllDArray<Dtype> &obj)

for(int i=0; i<size; i++)
array[i] = obj.array[i] ;

return *this;
}

1111111111111111 testing
// overload = (int) value, used to initialize the array
PvhdllDArray<Dtype>& operator=(int value) {

for(int i=0; i<size; i++)
array[i] = value;

return *this;
}

// overload +
PvhdllDArray<Dtype>& operator+(PvhdllDArray<Dtype> &obj)

PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size) ;

for(int i=0; i<size; i++)
temp->array[i] = array[i]+obj.array[i];

104

return *temp;
}

// overload -
PvhdllDArray<Dtype>& operator-(PvhdllDArray<Dtype> &ob j)

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++)
temp->array[i] = array[i]-obj.array[i];

return *temp;
}

// overload *
PvhdllDArray<Dtype>& operator*(PvhdllDArray<Dtype> &ob j)

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++)
temp->array[i] = array[i]*obj.array[i];

return *temp;
}

// overload /
PvhdllDArray<Dtype>& operator/(PvhdllDArray<Dtype> &obj)

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++)
temp->array[i] = array[i]/obj.array[i];

return * temp;
}

// overload &
PvhdllDArray<Dtype>& operator&(PvhdllDArray<Dtype> &obj)

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++) {
if(array[i]!=0 && obj.array[i]!=0) temp->array[i] = 1;

else temp->array[i] = 0;
}

105

return *temp;
}

// overload |
PvhdllDArray<Dtype>& operator|(PvhdllDArray<Dtype> &ob j)

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++) {
if(array[i]!=0 || obj.array[i]!=0) temp->array[i] = 1;

else temp->array[i] = 0;
}

return *temp;
}

// overload *
PvhdllDArray<Dtype>& operatorA(PvhdllDArray<Dtype> &obj

{
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(obj.size);

for(int i=0; i<size; i++) {
if(array[i] != obj.array[i]) temp->array[i] = 1;
else temp->array[i] = 0;

}

return * temp;
}

// overload ~
PvhdllDArray<Dtype>& operator-() {

PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>;
temp->allocateArray(size);

for(int i=0; i<size; i++) {
if(array[i] == 0) temp->array[i] = 1;
else temp->array[i] = 0;

}

re turn * t emp;
}

}; // class PvhdllDArray

106

#endif

107

APPENDIX H

INSTRUCTIONS AND MANUALS

FRONT END INTERFACE

To run the system, follow these steps:
0) cd ~pvhdl/savant/src/aire/iir/TEST. This is the main directory for generating
files.

1) Type and enter :
interface <Design File> <Entity Name> <Architecture Name> <Number
of events> <Clock Width> <Number of processors>
This will create a directory with the name <Design File>.FILES, which includes all the
generated files.

2) cd <Design File>.SIMULATION_FILES
There are three subdirectories: simulation_files, DEBUG and WORK. We just need the
files in simulation_files and the other two directories are for debugging purposes.

simulation_files directory, includes all the files that are used by the simulator. These files
are :

- <Entity Name>_<Architecture_Name>.net
- <Entity Name>_<Architecture_Name>.primary_inputs
- <Entity Name>_<Architecture_Name>.primary_outputs
- <EntityName>_<Architecture_Name>.partition. <Number of processors>
- <Entity Name>_<Architecture_Name>.vec. <Number of events>
- Classes.h
- InstantiateObject.cpp

3) cd simulation_files

4) copy files to the simulator's directory.

Since <Entity Name>_<Architecture_Name>.net is independent of partition

108

information or test vector size, the following utilities can be used to generate a new
partition
(new <Entity Name>_<Architecture_Name>.partition. > <Number of processors>
file)
or a new test vector (in <Entity Name>_<Architecture_Name>.vec. <Number of
events>) .

To generate a new partition, follow these steps:

1) cd ~pvhdl/savant/src/aire/iir/TEST

2) Type and enter :

randompartition <Design File> <Entity Name> <Architecture Name>
<Number of processors>
2) cd <Design File>.FILES

3) cd simulation_files

4) copy <Entity Name>_<Architecture_Name>.partition. <Number of
processors>
to the simulator's directory.

To generate a new test vector, follow these steps :

1) cd ~pvhdl/savant/src/aire/iir/TEST

2) Type and enter :

generate_vector <Design File> <Entity Name> <Architecture Name>
<Number of events> <Clock Width>

2) cd <Design File>.FILES

3) cd simulation_files

4) copy <Entity Name>_<Architecture_Name>.vec. <Number of events>
to the simulator's directory.

Example :

Suppose that the design file is shifter.vhd , with the top most design unit entity shifter

109

and architecture structural:

Design file : shifter.vhd
Top most entity name : shifter
Top most architecture name : structural
User specified number of events per primary input: 400
User specified clock width : 200
Number of processors for this simulation : 4

Then we follow the direction :

$ cd ~pvhdl/savant/src/aire/iir/TEST
$ interface shifter.vhd shifter structural 400 200 4

This will create a directory
~pvhdl/savant/src/aire/iir/TEST/shifter.vhd.SIMULATION_FILES

$ cd shifter.vhd.SIMULATION_FILES
$ cd simulation_files
$ls

will show:

shifter_structural.net
shifter_structural.primary_inputs
shifter_structural.primary_outputs
shifter_structural.partition.4
shifter_structural.vec.400
Classes.h
InstantiateObject.cpp
$ cp * <SIMULATION_DIRECTORY>.

Now, suppose that you want to generate a new partition with 8 processors

$ cd ~pvhdl/savant/src/aire/iir/TEST
$ random_partition shifter.vhd shifter structural 4
$ cd shifter.vhd.SIMULATION_FILES
$ cd simulation_files
$ cp shifter_structural.partition.8 <SIMULATION_DIRECTORY>.

110

Or you may want to generate a test vector with larger size :

$ cd ~pvhdl/savant/src/aire/iir/TEST
$ generate_vector shifter.vhd shifter structural 600 100
$cd shifter.vhd.SIMULATION_FILES
$ cd simulation_files
$ cp shifter_structural.vec.600 <SIMULATION_DIRECTORY>.

Description:

interface <Design File> <Entity Name> <Architecture Name> <Number
of events> <Clock Width> <Number of processors>
It is a C shell script, which glues different files that are created by scram and other utilities.
It creates a subdirectory with the name <Design File>.SIMULATION_FILES, which
includes all the generated files. It also creates three subdirectories under the <Design
File>.SIMULATION_FILES. These directories are

1) simulation_files, which includes all the files which are plugged into simulator. The
following files are created in this directory :

- <Entity Name>_<Architecture_Name>.net
Includes the interconnection information of the design (generated by scram).
- <Entity Name>_<Architecture_Name>.primary_inputs
Includes information about the primary inputs of the design (generated by scram).
- <Entity Name>_<Architecture_Name>.primary_outputs
Includes information about the primary outputs of the design (generated by scram).
- <Entity Name>_<Architecture_Name>.partition. <Number of processors>
Includes the partition information of the design (not generated by scram).
- <Entity Name>_<Architecture_Name>.vec. <Number of events>
Includes test bench for this design (not generated by scram).
- Classes.h
Includes C++ classes generated by scram.
- InstantiateObjectcpp
Includes initialization code for the simulator.

2) DEBUG, which includes additional files useful for debugging.. The following files are
created in this directory :

- <Entity Name>_<Architecture_Name>.net.debug

111

Includes the debugging interconnection information of the design (generated by scram).
- <Entity Name>_<Architecture_Name>.net.seg
Includes the interconnection information of the design (generated by scram).
- <Entity Name>_<Architecture_Name>.primary_inputs.debug
Includes debugging information about the primary inputs of the design (generated by
scram).
- <Entity Name>_<Architecture_Name>.primary_outputs.debug
Includes debugging information about the primary outputs of the design (generated by
scram).

3) WORK, which is a working directory for the scripts. Basically it contains the union of
the previous two directories.

This script invokes scram and three other perl scripts:

(1) partition.prl, which generates <Entity Name>_<Architecture_Name>.partition.
<Number of processors> file.

(2) test_vector.prl, which generates <Entity Name>_<Architecture_Name>.vec.
<Number of events> file.

(3) instantiation.prl, which generates InstantiationObject.cpp

112

PARALLEL SIMULATION

Parallel Simulation

After generating C++ models, they can be simulated by the simulation kernel. The steps are:
Test Vector Generation
Partitioning
Compiling

There are three different simulation kernels developed, sequential, synchronous, and Time Warp.
The following section describes the details how C++ models can be simulated. To simulate the
model in parallel, the user must specify the simulation kernel, the test vector size, the duration of
simulation cycle, partitioning scheme, among others. To simplify these steps, we have developed
scripts, and the following shows step by step how users can run a parallel simulation.

Directory structure

To simplify the running on HPC platforms, we have developed a script that works under two parallel
computers, Origin 2000 and IBM SP2. They share the source code in the system but their binary
code is different. There are two subdirectories. Subdirectory "o2k" contains the files for the Origin
2000 and subdirectory "sp2" contains the files for the IBM SP2.

"src" directory

The "src" directory contains all the source code for the simulation kernels and partitioning program.
There are three simulation kernels. They are "sequential", "synchronous" and "timewarp" separately,
"partition" subdirectory contains the source code for three different ways of partitioning. They
include random partition, random partition with duplication and level partition.

"bin" directory

The "bin" directory contains all the executables. "sequential" subdirectory includes the make file and
simulation file. Because there is a difference in the PBS format for Origin 2000 and IBM SP2, there
were two subdirectories for "synchronous" and "timewarp" directory. Each of them contains a
make script and a simulation script both in batch and interactive mode. For detailed information,
please see the README file in the directory or check the complete documentation.

The "partition" directory contains executables for random partition, random partition with
duplication and level partition, "util" directory contains utilities like checking the correctness of data
file and checking the output result of simulation. Please see the README file of that directory of
the complete documentation.

"data" directory

The "data" directory contains all the data generated by the interface program. The interface program
generates (from the VHDL file) the C++ model and elaboration information. Each directory
contains the files for one VHDL source file. The name of the directory must conform to the format
of "entity_architecture", otherwise it can not be correctly simulated.

113

"result" directory

The "result" directory contains the output results of a simulation run by batch mode. The simulation
kernel can be either synchronous or timewarp. Depending on the simulation kernel, parallel
computer (o2k, sp2) and the data, a corresponding directory will be created if it does not exist. For
example, if "oddeven_structure" is run with the timewarp kernel on the sp2, directory
"result/timewarp/sp2/oddeven_structure" will be created. Inside the directory are all the results
that ran with these parameters. If different numbers of processors are used in simulation, the file
name will be different in that directory. The number of processors can identify them.

The following figure shows the directory structure.

114

PVHDL src sequential

I
— synchronous

I
— timewarp

I
— partition

bin sequential

■I
— synchronous o2k

I
— sp2

- timewarp o2k

I
— sp2

- partition o2k

I
— sp2

 uul

— data entity_architecture_l

I

I " .
- entity_arcbitecture_k

- result synchronous o2k entity_architecture_l
| | ...
| — entity_architecture_k

I
— sp2 entity_arcbitecture_l

I -
— entity_architecture_k

timewarp o2k entity_architecture_l
| | ...
| — entity_architecture_k

I
— sp2 entity_architecture_l

I -
— entity_architecture_k

115

Compiling, Partitioning and Running

To compile and run a program, go to the "bin" directory. For the synchronous simulation kernel, go to
"bin/synchronous". You will find two subdirectories under "bin/synchronous". One is "o2k", the other is
"sp2". Directory "o2k" contains executables for SGI Origin 2000 and directory "sp2" contains executables
for IBM SP2. To get detailed information for compiling and running, check the README file of these two
directories.

Similarly, "bin/timewarp" contains the timewarp simulation kernel and "bin/sequential" contains
the sequential simulation kernel.

Compiling

Before simulation, the C++ model has to be compiled and linked with different simulation kernels.
There are several shell scripts that do this task.

Sequential Simulation

Directory: bin/sequential/o2k or bin/sequential/sp2
Command: seqmake <entity_arch>
Example: seqmake s35932xl_structural
Note: All the files below must be present in data/s35932xl_structural directory.

Classes.h
InstantiateObject.cpp

Synchronous Simulation

Directory: bin/synchronous/o2k or bin/synchronous/sp2
Command: syncmake <entity_arch>
Example: syncmake s35932xl_structural

Timewarp Simulation

Directory: bin/timewarp/o2k or bin/timewarp/sp2
Command: twmake <entity_arch>
Example: twmake s35932xl_structural

Partitioning

To simulate in parallel, it is necessary to partition the data statically for a particular number of
processors you want to simulate the C++ model with. The system provides three different
partitioning algorithms: random partition, random with duplication and level partitioning.

Random Partition:
Circuit graphs are partitioned in random assignment.
It is well known that random partition works well in most cases.

116

Random with duplication:
Certain gates that have high out-degree are duplicated to reduce the communication cost.

Level Partitioning
Gates that are in the same level are grouped together. This partitioning scheme works well
in the synchronous protocol.

Good partitioning can improve the performance of simulation. Depending on the C++ model, one
partitioning algorithm may perform better than the other ones. Synchronous simulation works only
with random partitioning. Timewarp simulation works with all the partitioning algorithms.

Random Partitioning

Directory: bin/partition/o2k or bin/partition/sp2
Command: RP <entity_arch> <Num Partition>
Example: RP s35932xl_structural 8
Note: The command in the example creates partitions from 1 up to 8 processors for the

model s35932xl_structural. The command requires that file
"s35932xl_structural.net" has to be present in the directory
"data/s35932xl_structural". After the successful execution, files
"s35932xl_structural.partiiion.l" to "ds35932xl_structural.partition.8" will be
generated in the directory "s35932xl_structural".

Random partitioning with duplication

Directory: bin/partition/o2k or bin/partition/sp2
Command: RP_Dup <entity_arch> <Num Partition>
Example: RP_Dup s35932xl_structural 8
Note: The command in the example creates partitions from 1 up to 8

processors for the model s35932xl_structural. The command requires that file
"s35932xl_structural.net" has to be present in the directory "data/s35932xl_structural".
After the successful execution, files "s35932xl_structural.partition.l.Dup" to
"s35932xl_structural.partition.8.Dup" will be generated in the directory
"s35932xl_structural".

Level Partition with duplication

Directory: bin/partition/o2k or bin/partition/sp2
Command: LP_Dup <entity_arch> <Num Partition>
Example: LP_Dup s35932xl_structural 8
Note: The command in the example creates partitions from 1 up to 8

processors for the model s35932xl_structural. The command
requires that file "s35932xl_structural.net" has to Be present
in the directory "data/s35932xl_structural". After the successful
execution, files "s35932xl_structural.partition.l.Level" to
"s35932xl_structural.partition.8.Lever' will be generated in
the directory "s35932xl_structural".

117

Running the simulation

After compiling and partitioning, you are ready to run the simulation. We provided the interactive
and batch scripts.

Sequential Simulation

Directory: bin/sequential/o2k or bin/sequential/sp2
Command: run_i <entity_arch> <VecSize> <MAXGVT> [PRINT]
Parameters:

<entity_arch>: the model to simulate
<VecSize>: the size of test vector
<MAXGVT>: the time limit of simulation
[PRINT]: 0 - Do not print events (Fastest)

1 - only print events on primary output
2 - print all the events

Example: run_i s35932xl_structural 1000 10000 0
The command above will simulate model "s35932xl_structural"
With 1000 test vectors and time limit 10000. This simulation does
not print any events.

The following files have to be in directory "data/s35932xl_structural"

s35932xl_structural.net
s35932xl_structural.partition. 1
s35932xl_structural.primary_inputs
s35932xl_structural.primary_outputs
s35932xl_structural.vec.1000

Synchronous Simulation

Directory: bin/synchronous/o2k or bin/synchronous/sp2
Command:

Interactive : run_i <entity_arch> <NumProcessor> <VecSize> <MAXGVT> [PRINT]

Batch: run_batch <entity_arch> <NumProcessor> <VecSize> <MAXGVT> [Granularity]
[PRINT]

Parameters:
<entity_arch>: the model to simulate
<NumProcessor>: Number of processors to use during the simulation
<VecSize>: the size of test vector
<MAXGVT>: the time limit of simulation
[PRINT]: 0 - Do not print events (Fastest)

1 - only print events on primary output
2 - print all the events

Example: run_batch s35932xl_structural 8 1000 10000 0 0

118

The command above will simulate model "s35932xl_structural"
with 1000 test vectors and time limit 10000. This
simulation does not print any event. The number of
processors used during the simulation is 8.

The following files have to be in directory "data/s35932xl_structural"

s35932xl_structural.net
s35932xl_structural.partition.8
s35932xl_structural.primary_inputs
s35932xl_structural.primary_outputs
s35932xl structural.vec.1000

Timewarp Simulation

Directory: bin/timewarp/o2k or bin/timewarp/sp2
Command:

Interactive : run_i <entity_arch> <NumProcessor> <VecSize> <MAXGVT> <Partition>
<Schedule> [PRINT] [GVTWINDOW] [MSGCHECK]

Batch: run_batch <entity_arch> <NumProcessor> <VecSize> <MAXGVT> <Partition>
<Schedule> [Granularity] [PRINT] [GVTWINDOW] [MSGCHECK]

Parameters:
<entity_arch>: the model to simulate
<NumProcessor>: Number of processors to use during the simulation
<VecSize>: the size of test vector
<MAXGVT>: the time limit of simulation
<Partition>: 0 - Random Partition

1 - Random Partition with Duplication
2 - Level Partition

<Schedule>: Number of objects active per communication cycle
[Granularity] default=0
[PRINT]: 0 - Do not print events (Fastest)

1 - only print events on primary output
2 - print all the events

[GVTWINDOW]: GVT window size. Default is MAXGVT.
[MSGCHK]: Number of objects active before checking message. Default is <Schedule>

Example: runjbatch s35932xl_structural 8 1000 100000 1 50 0 0
The command above will simulate model "s35932xl_stmctural"
With 1000 test vectors and time limit 100000. This
simulation does not print any events. The number of
processors used during the simulation is 8 and in each
communication cycle 50 objects are active.

119

The following files have to be in directory "data/s35932xl_structural"

s35932xl_structural.net
s35932xl_structural.partition. 8.Dup
s35932xl_structural.primary_inputs
s35932xl_strucrural.primary_outputs
s35932xl structural.vec.lOOO

120

REFERENCES

1. Peter J. Ashenden, 'The Designer' Guide to VHDL", Morgan Kaufmann, San

Francisco, 1996.

2. R. Baldwin, M.J. Chung and Y. Chung, "Overlapping Window Algorithm for

Computing GVT in Time Warp," Proc. 1991 International Conference on Distributed

Computing Systems, pp. 534-541. Also to appear Parallel Programming and

Applications.

3. Rajive L. Bagrodia, Designing Efficient Simulations Using Maisie, UCLA Technical

Reort, 1997.

4. A. Cabrera, M.J. Chung and Yunmo Chung, "A parallel VHDL Simulator on the

Connection Machine," Proc. of VHDL spring 92 Conf. pp.83-94.

5. Moon J. Chung, Department of Computer Science, Michigan State University. Parallel

VHDL Performance Simulation Cost and Schedule Report. [Online] Available

http://chung-resl.cps.msu.edu/pvhdl/sep.htm, Oct. 13, 1997

6. Moon Jung Chung andjiashen Zhou, "Version Control and Configuration

Management in Simulation," Technical Report, Michigan State University, 1998.

7. M.J. Chung and Y Chung, "Performance Prediction to Gate to Processor Ratio," Proc.

1992 International Conference on Parallel Processing, pp. 246-253.

8. M.J. Chung and YM. Chung, "An Experimental Analysis of Simulation Clock

Advancement in Parallel Logic Simulation on an SIMD Machine," Advances in Parallel

and Distributed Simulation, Vol. 23, No. pp. 125-133.

9. M.J. Chung and Y. Chung, "Efficient Parallel Logic Simulation Techniques for

121

the Connection Machine," Proc. of Supercomputdng'90, pp. 606-614.

10. M.J. Chung and Y. Chung, "Data Parallel Logic Simulation using Time Warp on the

Connection Machine," 1989 Design Automation Conference, pp. 98-103.

11. James P. Cohoon and Jack W. Davidson, "C++ Program Design - An Introduction to

Programming and Object-Oriented Design", Times Mirror Higher Education Group,

1997.

12. R. M. Cubert, and P. A. Fishwick. MOOSE: An Object-Oriented Multimodeling and

Simulation Application Framework Submitted to Simulation, June 1997.

13. J. Engelsma, Y. Chung and M.J. Chung, "Distributed Token-Driven Logic Simulation

on a shared-memory multiprocessor," Proc. 6th Workshop in Parallel and Distributed

Simulation, 1992, pages 197-198.

14. Fishwick, P. A. A Visual Object-Oriented Multimodeling Design Approach for

Physical Modeling Revision of tr96-026 send to ACM Transactions on Modeling

and Computer Simulation, April 1997.

15. D.R. Jefferson, "Virtual Time", ACM Trans. Programming Languages and Systems,

1985, July, pp. 404-425.

16. Venkatram Krishnaswamy and Prithviraj Banerjee, "Actor Based Parallel VHDL

Simulation Using Time Warp, to appear in Proceedings of the 1996 Workshop on

Parallel and Distributed Simulation, Philadelphia, PA, May 1996.

17. K. Lee and P.A. Fishwick. 1996. Dynamic Model Abstraction, In 1996 Winter

Simulation Conference, December, San Diego, CA, pp. 764-771.

18. Y. Lin and E.D. Lazowaska and ML. Bailey, "Comparing Synchronization Protocols

for Parallel Logic-Level Simulation", Proc. of the 1990 International Conference on

Parallel Processing, pp. 223-227.

122

19. J. Misra, 1995, Distributed discrete-event simulation, Computing Surveys, 18(1).

20. David Perllerin and Douglas Taylor, "VHDL Made Easy", Printice Hall, Upper Saddle

River, 1997.

21. Bruno R. Preiss, The YADDES Distributed Discrete Event Simulation Specification

Language and Execution Environments, 1989 SCS Multiconference on Distributed

Simulation, pp. 139-144.

22. R. Radhakrishnan, T. J. McBrayer, K. Subramani, M. Chetlur, V. Balakrishnan, and P.

A. Wilsey, "A Comparative Analysis of Various Time Warp Algorithms Implemented

in the WARPED Simulation Kernel," Proceedings of the 29th Annual Simulation

Symposium, 107-116, March 1996.

23. Hassen Rajaei, SIMA: An environment for parallel discrete-event simulation, The 25th

Annual Simulation Symposium, pp. 147-149. April 1992.

24. Khashayar Rohanimanesh, "Generating Map File by SAVANT", Technical Document

of Parallel VHDL Simulation Project, Department of Computer Science, Michigan

State University, July, 1998.

25. Jeffrey S. Steinman, Scalable Parallel and Distributed Military Simulations using the

Speedes Framework, 1996.

26. Jinsheng Xu, Department of Computer Science, Michigan State University, An Object

Oriented Model for Developing Event-Driven Systems. [Online] Available

ftp://chung-resl.cps.msu.edu/pvhdl/paper/OOMODEL.doc, April, 1998.

27. Jinsheng Xu, Department of Computer Science, Michigan State University, Parallel

VHDL Simulation Result Report. [Online] Available ftp://chung-

resl.cps.msu.edu/o2k_spl.xls, March, 1997.

28. Mai Yang, Department of Computer Science, Michignan State University. IIRPvhdl

Layer Source Code. [Online] Available telnet://chung-pvhdl.cps.msu.edu,

123

/home/savant/savant/src/aire/iir/IIRPvhdl, July, 1998.

29. Zeiger, Bernard P.: "Object-Oriented Simulation with Hierarchical, Modular Model",

Academic Press, 1990.

30. Department of ECECS, University of Cincinnati. IIRScram Layer Source Code.

[Online] Available telnet://chung-pvhdl.cps.msu.edu,

/home/savant/savant/src/aire/iir/IIRScram, June, 1998.

31. Dept. of ECECS, University of Cincinnati.SAVANT: An Extensible Intermediate for

VHDL. [Online] Available http://www.ececs.uc.edu/~paw/savant/index.html, July

11,1998.

32. Department of ECECS, University of Cincinnati. TyVIS: A VHDL Simulation Kernel.

[Online] Available http://www.ececs.uc.edu/~paw/tyvis/index.html, May 25,1998.

33. Department of ECECS, University of Cincinnati. AIRE Home Page - Advanced

Intermediate Representation with Extensibility (AIRE). [Online] Available

http://www.ececs.uc.edu/~paw/aire/index.html.

34. Dept. of ECECS, University of Cincinnati. SAVANT Programmer's Manual. [Online]

Available http://www.ececs.uc.edu/~paw/savant/doc/programmers/index.html,

Aug. 25,1997.

124

